PLANNING PROPOSAL

TO AMEND CLARENCE VALLEY LOCAL ENVIRONMENTAL PLAN 2011 TO PERMIT AN ADDITIONAL USE (RURAL SUPPLIES) ON PART OF LOT 11 DP 1259162 NO. 4 RIVER STREET, PALMERS ISLAND

Prepared by A.Fletcher & Associates Pty Ltd

Ref No.: 9561-1

Date: May, 2022

PLANNING PROPOSAL

TO AMEND CLARENCE VALLEY LOCAL ENVIRONMENTAL PLAN 2011 TO PERMIT AN ADDITIONAL USE (RURAL SUPPLIES) ON PART OF LOT 11 DP 1259162 NO.4 RIVER STREET, PALMERS ISLAND

Declaration: Amend Schedule 1 of Clarence Valley LEP 2011 to add an Additional Use (Rural Supplies) on part of Lot 11 DP 1259162 (No. 4) River Street, Palmers Island.

Document Author: Rob Donges

Position of document author: Planning Consultant

Qualifications of document author:	B.A. Master Town & Country Planning
	I, Rob Donges, declare that this Planning Proposal constitutes a
	planning proposal for the purposes of section 3.33 of the
	Environmental Planning and Assessment Act 1979 (the Act) and
	further declare that the document complies with the relevant
	provisions of the Act and the Department of Planning and
	Environment's Local Environmental Plan Making Guideline
	(December, 2021)

Date: 29/3/2021

Note: Clarence Valley Council at its meeting on 22nd June, 2021 considered a report on this proposal and resolved:

"That Council supports the planning proposal REZ2021/0003 to amend Schedule 1 Additional Permitted Uses of the CV LEP 2011 to permit a "rural supplies" business on the specific proposal site on Lot 11 DP 1259162 coupled with an amendment to the CV LEP 2011 Additional Permitted Use Map."

This Planning Proposal has now been amended and updated to reflect this resolution and the updated Plan Making format.

The following additional Annexures have been included.

Annexure I: Preliminary Site Investigation (ENV Solutions, Feb, 2022) and Contamination Report Annexure J: Summary Table Annexure K: Flood Impact Assessment Report (Structerre, January 2022) Annexure L: DPI Advice. Annexure M: Transport for NSW Response Annexure N: Clause 5.21 Assessment Annexure O: Traffic Impact Assessment (Bitzios, March 2022). Annexure P: LSPS Assessment Annexure Q: SEPP (Resilience & Hazards) 2021 Assessment

1. <u>Preliminary</u>

1.1 Introduction

Pridel Pty Ltd, owners of Lot 11 DP 1259162 (No.4) River Street Palmers Island, are seeking to allow a rural supplies business to be established on the property through amendment to the Clarence Valley LEP 2011 Schedule 1 Additional Permitted Uses.

A farm shed and flood mound have previously been approved on the property (DA2020/0216 & CC2020/0187) and the intention of the amendment is to allow a further development application to be submitted for an additional shed to be occupied by a rural supplies business immediately adjacent to the existing shed. The property is zoned RU1 Primary Production and rural supplies operations are prohibited.

1.2 Property Description

Figure 1: Locality Map

Lot 11 consists of 2 non-contiguous sections, 1 south of Palmers Island Village and 1 north. The entire holding (No.4 River Road) also includes another 2 separate lots either side of the Village.

1.3 Subject Land

Figure 2: Aerial Site Plan

The property has a total area of 41.53ha, of which approximately 27.18ha is located in the southern portion. The entire property is developed as a macadamia plantation containing around 23,000 trees. There is a rural shed associated with the plantation located on the southern portion, and it is proposed to construct a similar shed immediately adjacent to its south for the rural supplies business.

1.4 Background

DA2020/0216 for the construction of a farm building with sanitary facilities and flood mound was approved in August, 2020. The shed is located on an existing cane pad and has an area of 720m² (36m x 20m) set back 22m from Yamba Road. The approved flood mound provides protection against nuisance flooding, with Condition 9 of the development consent requiring all construction below 3.42m AHD to be flood compatible. The consent also required the provision of a unisex accessible toilet and an on-site wastewater management facility.

It is proposed to construct the additional shed on the existing mound, which needs to be extended approximately 20m to the south, immediately adjacent to the approved shed with parking (6 spaces) plus loading bay and manoeuvring space.

2. <u>Part 1 – Objectives and Intended Outcome</u>

The objective of the planning proposal is to permit a rural supplies business to be established on the identified section of the property via the addition of this property and the proposed land use onto the Additional Permitted Use Schedule of Clarence Valley LEP 2011.

The intended outcome is a rural supplies business servicing the agricultural sector in the area.

3. <u>Part 2 – Explanation of Provisions</u>

The objective and intended outcome of the Proposal will be achieved by the addition of the following to the Clarence Valley LEP 2011 Schedule 1 Additional Permitted Uses:-

"Use of certain land at No.4 River Street, Palmers Island"

- 1) This clause applies to No. 4 River Street, Palmers Island being Lot 11 DP 1259162, identified as xx on the Additional Permitted Uses Map.
- 2) Development for the purpose of a rural supplies business is permitted with development consent.

4. Part 3 – Justification

4.1 <u>Is the Proposal a result of and endorsed Local Strategic Planning Statement,(LSPS), strategic study or report?</u>

Not directly.

Priority 13 of the Clarence Valley Local Strategic Planning Statement 2020 is *"protect agricultural land and increase opportunities for access to locally produced fresh food and economic growth"*. Although none of the 8 Actions are directly relevant to the proposal, the theme of the priority is that the agricultural sector is critical to the valley and needs to be protected, strengthened and enhanced. The proposal will permit an agricultural related land use servicing the local agricultural sector to be established within a large and diverse local agricultural sector on Palmers Island. A LSPS Assessment is at Annexure P.

The key driver behind the proposal is economic. An existing rural supplies business in the Clarence Valley has identified Palmers Island and surrounds as having the potential to support a business of this nature, and the subject site as having the location and exposure to ensure its viability.

The alternative would be to identify a RU2 zoned property in the vicinity upon which the business would be permissible. An investigation of the location of RU2 land south of the river in this general locality indicates that it is invariably located at the periphery away from prime agricultural land along the river. Establishing a business of this nature in "outlying" areas has the potential to create traffic and land use conflicts which would not arise for this site on Yamba Road.

4.2 <u>Is the planning proposal the best means of achieving the objectives or intended outcomes, or is</u> <u>there a better way</u>?

Yes.

The alternative would be to rezone the portion of the property where the shed is located to RU2 Rural Landscape which permits rural supplies. The Department of Primary Industries by letter, dated 6th May, 2021 have stated that they would not support this rezoning approach but would support an amendment to the CVLEP Schedule 1 Additional Permitted Uses to include the subject property and use.

Section B – Relationship to Strategic planning framework

4.3 <u>Will the Planning Proposal give the effect to the objectives and actions of the applicable</u> regional or district plan or strategy (including any exhibited draft plans or strategies)?

The North Coast Regional Plan 2036 (NCRP 2036) released in March 2017 is the applicable regional plan. It is the NSW Governments strategy for guiding land use planning decisions for the North Coast region.

The Regional Plan comprises 4 goals, 25 directions and 80 actions. The goals articulate the intended outcome; the directions identify the broad issues or policy areas that need to be focused on; and the actions represent the steps needed to be taken or initiatives that need to be implemented to achieve the goals. Actions are either implemented as strategies or as initiatives.

An assessment of the goals, actions and directions of NCRP 2036 is at Annexure B. It indicates that the majority are not directly relevant to the proposal.

The proposal is inconsistent with <u>Goal 2 Direction 6 – Develop successful centres of</u> <u>employment Action 6.4</u> as it will permit a commercial activity outside an existing centre but the activity (rural supplies store) is permissible on all RU2 land which is always located outside of centres.

<u>Goal 2 Direction 11 – Protect and enhance productive agricultural land</u> is also directly relevant and the proposal is inconsistent with Action 11.1 but justified on the basis that the rural supplies business is an agriculturally related land use and will service the local agricultural sector. It is consistent with Action 11.4 as it permits a niche commercial activity which compliments the local agricultural sector. The proposal will result in the removal of 15 macadamia trees but these will be replanted to replace macadamia trees damaged in the recent wind storm.

4.4 <u>Is the Planning Proposal consistent with a Council Local Strategic Planning Statement that has</u> been endorsed by the planning Secretary or GSC, or another endorsed local strategy or <u>strategic plan?</u>

An assessment of the proposal against relevant strategies is at Annexure C and a LSPS Assessment is at Annexure P.

4.5 <u>Is the Planning Proposal consistent with any other applicable State or regional studies or</u> <u>strategies?</u>

No other state or regional studies or strategies are directly applicable to the proposal.

4.6 Is the Planning Proposal consistent with applicable State Environmental Planning Policies?

An assessment of the proposal against the Policies is at Annexure D, with only SEPP (Resilience and Hazards) 2021 being relevant in respect of coastal management and remediation of land. A Preliminary Site Investigation addressing site contamination is attached at Annexure I and coastal management is addressed in Annexure Q. Both conclude that the proposal is consistent and will have no impact.

4.7 <u>Is the Planning Proposal consistent with applicable Ministerial Directions (Section 9.1</u> <u>Directions).</u>

Assessment against the 9.1 Directions is at Annexure F. The proposal is inconsistent with Directions 1.1 Implementation of Regional Plans, 4.5 Acid Sulphate Soils and 9.2 Rural Lands but justified in each instance due to the relationship of the proposed rural supplies business with the surrounding agricultural activity and the minor scale of the proposal and inconsistencies.

Section C – Environmental, Social & Economic impacts.

4.8 <u>Is there any likelihood that critical habitat or threatened species, populations or ecological</u> <u>communities, or their habitats, will be adversely affected as a result of the proposal?</u>

No.

The minor extension of the existing mound onto the surrounding plantation will have no ecological impacts.

4.9 <u>Are there any other likely environmental effects as a result of the planning proposal and how</u> <u>are they proposed to be managed?</u>

No.

The additional shed will require a unisex accessible toilet and associated on-site wastewater management system similar to that provided for the existing shed. Disposal areas will be on land adjacent to the mound within the macadamia plantation.

4.10 Has the Planning Proposal adequately addressed any social & economic effects

The lower Clarence Valley has significant agricultural production, particularly cane cultivation and macadamia plantations, but also cattle grazing and tea tree cultivation. It is currently serviced by 2 rural supplies businesses- Maclean Rural Supplies at Townsend (11km away) and Harwood Farm Store (6.3km away). The proposed business will provide a further option for the agricultural sector and the wider community who source goods and equipment sold by these businesses.

4.11 Is there adequate public infrastructure for the planning proposal?

Yes.

Water and power are immediately available, and effluent will be managed on-site in accordance with future conditions of consent.

Vehicle access will be directly from Yamba Road and a Traffic Impact Assessment is attached at Annexure O. It concludes that the volume of traffic generated is 8 vehicles (2-way) in peak periods which is deemed low and with negligible impact on the external road network. Access is in the form of an auxiliary left-turn lane from the south from where all supply vehicles will emanate and return.

4.12 <u>What are the views of State & Commonwealth public authorities consulted in accordance with</u> <u>the gateway determination?</u>

Responses from Department of Primary Industries and Transport NSW are attached at Annexure L and M respectively. DPI did not support the initial approach of rezoning the site to RU2 Rural Landscape but does support rural supplies being added as an Additional Use as it is an agricultural related land use. Transport for NSW did not oppose the proposal but requested that Council consider the impact of allowing commercial use in this rural location and the transport infrastructure needed to support it. As a result, the Traffic Impact Assessment (Annexure O) was prepared and concluded that traffic generation is low and will have negligible impact on the external road network.

5. <u>Part 4 – Mapping</u>

Annexure A contains the current zoning map of the property.

6. <u>Part 5 – Community Consultation</u>

The proposal is "Standard" under the 2021 Guidelines, requiring exhibition for 20 working days.

7. <u>Part 6 – Project Timeline</u>

MILESTONE	DATE/S	COMMENT
1. Gateway Determination		
2. Agency Consultation		
3. Public Exhibition		
4. Public Hearing		
 Consideration of submissions 		
6. Post-exhibition consideration of PP		
7. RPA intends to make the Plan		
8. RPA intends to forward Plan to Dept for notification		

ANNEXURES

- A. Additional Permitted Uses Map
- B. North Coast Regional Plan 2036 Consistency Checklist
- C. Clarence Valley Council Strategy & Strategic Plan Consistency Checklist
- D. State Environmental Planning Policy Consistency Checklist
- E. Section 9.1 Direction Consistency Checklist
- F. Direction 9.2 Rural Lands Assessment
- G. Concept Plan
- H. AHIMS Search
- I. Preliminary Site Investigation (ENV Solutions, Feb, 2022) & Contamination Report
- J. Summary Table
- K. Flood Impact Assessment Report (Structerre, January, 2022)
- L. DPI Advice
- M. Transport for NSW Response
- N. Clause 5.21 Assessment
- O. Annexure O: Traffic Impact Assessment (Bitzios, March 2022)
- P. LSPS Assessment
- Q. SEPP (Resilience & Hazards) 2021 Assessment

ANNEXURE A

ADDITIONAL PERMITTED USES MAP

ANNEXURE B

North Coast Regional Plan 2036 Consistency Checklist

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS & ACTIONS	CONSISTENCY	COMMENTS
Goal 1 - The most stunning environment in NSW		
Direction 1 - Deliver environmentally sustainable growth		
Action 1.1 - Focus future urban development to mapped urban growth areas.	Yes	Consistent although this action is not directly relevant to the planning proposal.
<u>Action 1.2</u> - Review areas identified as 'under investigation' within urban growth areas to identify and map sites of potentially high environmental value.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 1.3</u> - Identify residential, commercial or industrial uses in urban growth areas by developing local growth management strategies endorsed by the Department of Planning and Environment.	Yes	The proposal will permit a rural supplies business to operate from the proposed additional shed (subject to Council approval) but this is already permissible on any land zoned RU2 and so is not limited to urban growth areas.
Action 1.4 - Prepare land release criteria to assess appropriate locations	Yes	Consistent although this action is not
for future residential, commercial and industrial uses.		directly relevant to the planning proposal
Goal 1 - The most stunning environment in NSW		
Direction 2 - Enhance biodiversity, coastal and aquatic habitats, and wa	ater catchments	
<u>Action 2.1</u> - Focus development to areas of least biodiversity sensitivity in the region and implement the 'avoid, minimise, offset' hierarchy to	Yes	Consistent although this action is not directly relevant to the planning proposal
biodiversity, including areas of high environmental value.		
<u>Action 2.2</u> - Ensure local plans manage marine environments, water catchment areas and groundwater sources to avoid potential development impacts.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 1 - The most stunning environment in NSW Direction 3 - Manage natural hazards and climate change		
<u>Action 3.1</u> - Reduce the risk from natural hazards, including the projected effects of climate change, by identifying, avoiding and managing vulnerable areas and hazards.	Yes	The approval for the first shed incorporates flood protection requirement which are likely to be replicated on any approval for the additional shed
<u>Action 3.2</u> - Review and update floodplain risk, bushfire and coastal management mapping to manage risk, particularly where urban growth is being investigated.	Yes	This matter is the responsibility of Council.
<u>Action 3.3</u> - Incorporate new knowledge on regional climate projections and related cumulative impacts in local plans for new urban development.	Yes	This matter is the responsibility of Council.
Goal 1 - The most stunning environment in NSW Direction 4 - Promote renewable energy opportunities		

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS & ACTIONS	CONSISTENCY	COMMENTS
<u>Action 4.1</u> - Diversify the energy sector by identifying renewable energy resource precincts and infrastructure corridors with access to the electricity network.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 4.2</u> - Enable appropriate smaller-scale renewable energy projects using bio-waste, solar, wind, small-scale hydro, geothermal or other innovative storage technologies.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 4.3 - Promote appropriate smaller and community-scale renewable energy projects.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 2 - A thriving, interconnected economy Direction 5 - Strengthen communities of interest and cross-regional rel	ationships	
<u>Action 5.1</u> - Collaborate on regional and intra-regional housing and employment land delivery, and industry development.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 5.2</u> - Integrate cross-border land use planning between NSW and South East Queensland, and remove barriers to economic, housing and jobs growth.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 5.3 - Encourage ongoing cooperation and land use planning between the City of Gold Coast and Tweed Shire Council.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 5.4</u> - Prepare a regional economic development strategy that drives economic growth opportunities by identifying key enabling infrastructure and other policy interventions to unlock growth.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 2 - A thriving, interconnected economy Direction 6 - Develop successful centres of employment		
<u>Action 6.1</u> - Facilitate economic activity around industry anchors such as health, education and airport facilities by considering new infrastructure needs and introducing planning controls that encourage clusters of related activity.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 6.3</u> - Promote knowledge industries by applying flexible planning controls, providing business park development opportunities and identifying opportunities for start-up industries.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 6.3</u> - Reinforce centres through local growth management strategies and local environmental plans as primary mixed-use locations for commerce, housing, tourism, social activity and regional services.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 6.4 - Focus retail and commercial activities in existing centres and develop place–making focused planning strategies for centres.	Inconsistent but justified	The proposal will permit a retail activity outside existing centres, but it is

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS & ACTIONS	CONSISTENCY	COMMENTS
		permissible on all RU2 land which in all instances is located outside of centres.
<u>Action 6.5</u> - Promote and enable an appropriate mix of land uses and prevent the encroachment of sensitive uses on employment land through local planning controls.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 6.6</u> - Deliver an adequate supply of employment land through local growth management strategies and local environmental plans to support jobs growth.	Yes	Will permit eimplyment generating activity on appropriately zoned land without any negative impact on surrounding employment generating activities.
Action 6.7 - Ensure employment land delivery is maintained through an annual North Coast Housing and Land Monitor.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 2 - A thriving, interconnected economy Direction 7 - Coordinate the growth of regional cities		
 <u>Action 7.1</u> - Prepare action plans for regional cities that: ensure planning provisions promote employment growth and greater housing diversity; promote new job opportunities that complement existing employment nodes around existing education, health and airport precincts; identify infrastructure constraints and public domain improvements that can make areas more attractive for investment; and deliver infrastructure and coordinate the most appropriate staging and sequencing of development. 	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 2 - A thriving, interconnected economy Direction 8 - Promote the growth of tourism		
<u>Action 8.1</u> - Facilitate appropriate large-scale tourism developments in prime tourism development areas such as Tweed Heads, Tweed Coast, Ballina, Byron Bay, Coffs Harbour and Port Macquarie.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 8.2</u> - Facilitate tourism and visitor accommodation and supporting land uses in coastal and rural hinterland locations through local growth management strategies and local environmental plans.	Yes	Consistent although this action is not directly relevant to the planning proposal
 <u>Action 8.3</u> - Prepare destination management plans or other tourism focused strategies that: identify culturally appropriate Aboriginal tourism opportunities; encourage tourism development in natural areas that support conservation outcomes; and strategically plan for a growing international tourism market. 	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 8.4 - Promote opportunities to expand visitation to regionally	Yes	Consistent although this action is not

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS & ACTIONS	CONSISTENCY	COMMENTS
significant nature-based tourism places, such as Ellenborough Falls, Dorrigo National Park, Wollumbin–Mount Warning National Park, Iluka Nature Reserve and Yuraygir Coastal Walk.		directly relevant to the planning proposal
<u>Action 8.5</u> - Preserve the region's existing tourist and visitor accommodation by directing permanent residential accommodation away from tourism developments, except where it is ancillary to existing tourism developments or part of an area otherwise identified for urban expansion in an endorsed local growth management strategy.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 2 - A thriving, interconnected economy Direction 9: Strengthen regionally significant transport corridors		
<u>Action 9.1</u> - Enhance the competitive value of the region by encouraging business and employment activities that leverage major inter-regional transport connections, such as the Pacific Highway, to South East Queensland and the Hunter.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 9.2</u> - Identify buffer and mitigation measures to minimise the impact of development on regionally significant transport infrastructure including regional and state road network and rail corridors.	Yes	Consistent although this action is not directly relevant to the planning proposal
 <u>Action 9.3</u> - Ensure the effective management of the State and regional road network by: preventing development directly adjoining the Pacific Highway; preventing additional direct 'at grade' access to motorway-class sections of the Pacific Highway; locating highway service centres on the Pacific Highway at Chinderah, Ballina, Maclean, Woolgoolga, Nambucca Heads, Kempsey and Port Macquarie, approved by the Department of Planning and Environment and Roads and Maritime Services; and identifying strategic sites for major road freight transport facilities. 	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 2 - A thriving, interconnected economy		
Direction 10 - Facilitate air, rail and public transport infrastructure <u>Action 10.1</u> - Deliver airport precinct plans for Ballina–Byron, Lismore, Coffs Harbour and Port Macquarie that capitalise on opportunities to diversify and maximise the potential of value-adding industries close to airports.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 10.2</u> - Consider airport-related employment opportunities and precincts that can capitalise on the expansion proposed around Gold Coast Airport.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 10.3 - Protect the North Coast Rail Line and high-speed rail corridor	Yes	Consistent although this action is not

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS & ACTIONS	CONSISTENCY	COMMENTS
to ensure network opportunities are not sterilised by incompatible land uses or land fragmentation.		directly relevant to the planning proposal
Action 10.4 - Provide public transport where the size of the urban area has the potential to generate sufficient demand.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 10.5 - Deliver a safe and efficient transport network to serve future release areas.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 2 - A thriving, interconnected economy Direction 11: Protect and enhance productive agricultural lands		
Action 11.1 - Enable the growth of the agricultural sector by directing urban and rural residential development away from important farmland and identifying locations to support existing and small-lot primary production, such as horticulture in Coffs Harbour.	Yes	The proposal will permit a development application to be submitted on the subject property for a rural supplies business. The location is mapped as important farmland supporting a diversie range of agricultural production including cane, macadamias, ti tree and cattle grazing. As stated by the DPI in their correspondence of 6 th May, 2021 "it is recognised that 'rural supplies' is an agricultural related land use" This is the basis for their support for an Additional Permitted Use amendment. The subject property contains approximately 23,000 macadmaia trees of which 15 will require relocation in the plantation as the majority of the proposed site is covered by a flood mound constructed on a disused cane pad.
<u>Action 11.2</u> - Deliver a consistent management approach to important farmland across the region by updating the Northern Rivers Farmland Protection Project (2005) and Mid North Coast Farmland Mapping Project (2008).	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 11.3 - Identify and protect intensive agriculture clusters in local plans to avoid land use conflicts, particularly with residential and rural residential expansion.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 11.4 - Encourage niche commercial, tourist and recreation activities that complement and promote a stronger agricultural sector, and build the sector's capacity to adapt to changing circumstances.	Yes	The proposed rural supplies business will service the local agricultural sector.
Action 11.5 - Address sector-specific considerations for agricultural	Yes	Consistent although this action is not

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS &	CONSISTENCY	COMMENTS
ACTIONS		
industries through local plans.		directly relevant to the planning proposal
Goal 2 - A thriving, interconnected economy		
Direction 12 - Grow agribusiness across the region	1	
Action 12.1 - Promote the expansion of food and fibre production,	Yes	Consistent although this action is not
agrichemicals, farm machinery, wholesale and distribution, freight and		directly relevant to the planning proposal
logistics, and processing through flexible planning provisions in local		
growth management strategies and local environmental plans.		
Action 12.2 - Encourage the co-location of intensive primary industries,	Yes	Consistent although this action is not
such as feedlots and compatible processing activities.		directly relevant to the planning proposal
Action 12.3 - Examine options for agribusiness to leverage proximity from	Yes	Consistent although this action is not
the Gold Coast and Brisbane West Wellcamp airports.		directly relevant to the planning proposal
Action 12.4 - Facilitate investment in the agricultural supply chain by	Yes	Consistent although this action is not
protecting assets, including freight and logistics facilities, from land use		directly relevant to the planning proposal
conflicts arising from the encroachment of incompatible land uses.		
Goal 2 - A thriving, interconnected economy		
Direction 13 - Sustainably manage natural resources	1	
Action 13.1 - Enable the development of the region's natural, mineral and	Yes	Consistent although this action is not
forestry resources by directing to suitable locations land uses such as		directly relevant to the planning proposal
residential development that are sensitive to impacts from noise, dust and		
light interference.		
Action 13.2 - Plan for the ongoing productive use of lands with regionally	Yes	Consistent although this action is not
significant construction material resources in locations with established		directly relevant to the planning proposal
infrastructure and resource accessibility.		
Goal 3 - Vibrant and engaged communities		
Direction 14 - Provide great places to live and work		
Action 14.1 - Prepare precinct plans in growth areas, such as Kingscliff, or	Yes	Consistent although this action is not
centres bypassed by the Pacific Highway, such as Woodburn and Grafton,		directly relevant to the planning proposal
to guide development and establish appropriate land use zoning,		
development standards and developer contributions.		
Action 14.2 - Deliver precinct plans that are consistent with the Precinct	Yes	Consistent although this action is not
Plan Guidelines (Appendix C).		directly relevant to the planning proposal
Goal 3 - Vibrant and engaged communities		
Direction 15 - Develop healthy, safe, socially engaged and well-connec		
Action 15.1 - Deliver best-practice guidelines for planning, designing and	Yes	Consistent although this action is not
developing healthy built environments that respond to the ageing		directly relevant to the planning proposal
demographic and subtropical climate.		
Action 15.2 - Facilitate more recreational walking and cycling paths and	Yes	Consistent although this action is not

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS & ACTIONS	CONSISTENCY	COMMENTS
expand inter-regional and intra-regional walking and cycling links, including the NSW Coastline Cycleway.		directly relevant to the planning proposal
<u>Action 15.3</u> - Implement actions and invest in boating infrastructure priorities identified in regional boating plans to improve boating safety, boat storage and waterway access.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 15.4 - Create socially inclusive communities by establishing social infrastructure benchmarks, minimum standards and social impact assessment frameworks within local planning.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 15.5 - Deliver crime prevention through environmental design outcomes through urban design processes.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 3 - Vibrant and engaged communities		
Direction 16 - Collaborate and partner with Aboriginal communities	Yes	Consistent although this action is not
<u>Action 16.1</u> - Develop partnerships with Aboriginal communities to facilitate engagement during the planning process, including the development of engagement protocols.	res	Consistent although this action is not directly relevant to the planning proposal
Action 16.2 - Ensure Aboriginal communities are engaged throughout the preparation of local growth management strategies and local	Yes	Consistent although this action is not directly relevant to the planning proposal
environmental plans.		
Goal 3 - Vibrant and engaged communities Direction 17: Increase the economic self-determination of Aboriginal co	ommunities	
Action 17.1 - Deliver opportunities to increase the economic independence	Yes	Consistent although this action is not
of Aboriginal communities through training, employment and tourism.		directly relevant to the planning proposal
<u>Action 17.2</u> - Foster closer cooperation with Local Aboriginal Land Councils to identify the unique potential and assets of the North Coast communities.	Yes	Consistent although this action is not directly relevant to the planning proposal
Action 17.3 - Identify priority sites with economic development potential that Local Aboriginal Land Councils may wish to consider for further investigation.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 3 - Vibrant and engaged communities		
Direction 18 - Respect and protect the North Coast's Aboriginal heritag		
<u>Action 18.1</u> - Ensure Aboriginal objects and places are protected, managed and respected in accordance with legislative requirements and the wishes of local Aboriginal communities.	Yes	AHIMS search shows no Aboriginal sites or objects in the vicinity which reflects its long agricultural use.
<u>Action 18.2</u> - Undertake Aboriginal cultural heritage assessments to inform the design of planning and development proposals so that impacts to Aboriginal cultural heritage are minimised and appropriate heritage management mechanisms are identified.	Yes	Consistent although this action is not directly relevant to the planning proposal

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS & ACTIONS	CONSISTENCY	COMMENTS
Action 18.3 - Develop local heritage studies in consultation with the local	Yes	Consistent although this action is not
Aboriginal community, and adopt appropriate measures in planning		directly relevant to the planning proposal
strategies and local plans to protect Aboriginal heritage.		
Action 18.4 - Prepare maps to identify sites of Aboriginal heritage in	Yes	Consistent although this action is not
'investigation' areas, where culturally appropriate, to inform planning		directly relevant to the planning proposal
strategies and local plans to protect Aboriginal heritage.		
Goal 3 - Vibrant and engaged communities	·	
Direction 19 - Protect historic heritage		
Action 19.1 - Ensure best-practice guidelines are considered such as the	Yes	Consistent although this action is not
Australia International Council on Monuments and Sites (ICOMOS)		directly relevant to the planning proposal
Charter for Places of Cultural Significance and the NSW Heritage Manual		
when assessing heritage significance.		
Action 19.2 - Prepare, review and update heritage studies in consultation	Yes	Consistent although this action is not
with the wider community to identify and protect historic heritage items,		directly relevant to the planning proposal
and include appropriate local planning controls.		
Action 19.3 - Deliver the adaptive or sympathetic use of heritage items and	Yes	Consistent although this action is not
assets.		directly relevant to the planning proposal
Goal 3 - Vibrant and engaged communities	•	
Direction 20 - Maintain the region's distinctive built character		
Action 20.1 - Deliver new high-quality development that protects the	Yes	Consistent although this action is not
distinct character of the North Coast, consistent with the North Coast		directly relevant to the planning proposal
Urban Design Guidelines (2009)		
Action 20.2 - Review the North Coast Urban Design Guidelines (2009).	Yes	Consistent although this action is not
		directly relevant to the planning proposal
Goal 3 - Vibrant and engaged communities		
Direction 21 - Coordinate local infrastructure delivery		
Action 21.1 - Undertake detailed infrastructure service planning to support	Yes	Consistent although this action is not
proposals for new major release areas.		directly relevant to the planning proposal
Action 21.2 - Maximise the cost-effective and efficient use of infrastructure	Yes	Consistent although this action is not
by directing development towards existing infrastructure or promoting the		directly relevant to the planning proposal
co-location of new infrastructure.		
Goal 4 - Great housing choice and lifestyle options		
Direction 22 - Deliver greater housing supply		
Action 22.1 - Deliver an appropriate supply of residential land within local	Yes	Consistent although this action is not
growth management strategies and local plans to meet the region's		directly relevant to the planning proposal
projected housing needs.		
Action 22.2 - Facilitate housing and accommodation options for temporary	Yes	Consistent although this action is not

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS & ACTIONS	CONSISTENCY	COMMENTS
 residents by: preparing planning guidelines for seasonal and itinerant workers accommodation to inform the location and design of future facilities; and working with councils to consider opportunities to permit such facilities 		directly relevant to the planning proposal
through local environmental plans.		
<u>Action 22.3</u> - Monitor the supply of residential land and housing through the North Coast Housing and Land Monitor.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 4 - Great housing choice and lifestyle options Direction 23 - Increase housing diversity and choice		
Action 23.1 - Encourage housing diversity by delivering 40 per cent of new housing in the form of dual occupancies, apartments, townhouses, villas or dwellings on lots less than 400 square metres, by 2036.	Yes	Consistent although this action is not directly relevant to the planning proposal
<u>Action 23.1</u> - Develop local growth management strategies to respond to changing housing needs, including household and demographic changes, and support initiatives to increase ageing in place.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 4 - Great housing choice and lifestyle options Direction 24: Deliver well-planned rural residential housing areas		
 <u>Action 24.1</u> - Facilitate the delivery of well-planned rural residential housing areas by: identifying new rural residential areas in a local growth management strategy or rural residential land release strategy endorsed by the 	Yes	Consistent although this action is not directly relevant to the planning proposal
 Department of Planning and Environment; and ensure that such proposals are consistent with the Settlement Planning Guidelines: Mid and Far North Coast Regional Strategies (2007) or land release criteria (once finalised). 		
<u>Action 24.2</u> - Enable sustainable use of the region's sensitive coastal strip by ensuring new rural residential areas are located outside the coastal strip, unless already identified in a local growth management strategy or rural residential land release strategy endorsed by the Department of Planning and Environment.	Yes	Consistent although this action is not directly relevant to the planning proposal
Goal 4 - Great housing choice and lifestyle options Direction 25 - Deliver more opportunities for affordable housing		
Action 25.1 - Deliver more opportunities for affordable housing by	Yes	Consistent although this action is not

NORTH COAST REGIONAL PLAN 2036 GOALS, DIRECTIONS &	CONSISTENCY	COMMENTS
ACTIONS		
incorporating policies and tools into local growth management strategies		directly relevant to the planning proposal
and local planning controls that will enable a greater variety of housing		
types and incentivize private investment in affordable housing.		
Action 25.2 - Prepare guidelines for local housing strategies that will	Yes	Consistent although this action is not
provide guidance on planning for local affordable housing needs.		directly relevant to the planning proposal

ANNEXURE C

Council Local Strategy & Strategic Plans Consistency Checklist

APPENDIX 2: COUNCILS LOCAL STRATEGY AND STRATEGIC PLAN/S CONSISTENCY CHECKLIST

(Note - refer to section 4.4 of this template document)

Strategy/Strategic Plan	Relevant component/statement of consistency
The Clarence 2027	The only relevant objective is 3.1 – To have an attractive and diverse environment for business, tourism and industry. The proposal will enable a small business servicing the surrounding agricultural sector to be established.
Council's Delivery Program and Operational Plan	There are not strategies or actions directly relevant to the proposal.
Maclean Urban Catchment Local Growth Management Strategy 2011	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
South Grafton Heights Precinct Strategy	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
Clarence Valley Settlement Strategy	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
Lower Clarence Retail Strategy (May 2007)	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
Yamba Retail/Commercial Strategy (May 2002)	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
Clarence Valley Economic Development Strategic Plan	The Plan facilitates economic growth across the Clarence Valley, to which this proposal will make a minor contribution.
Clarence Valley Industrial Lands Strategy	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
Clarence Valley Affordable Housing Strategy	Not relevant. The planning proposal has no direct relevance to this strategy and vica versa.
Clarence Valley Council Biodiversity Management Strategy 2010	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
Clarence River Way Masterplan 2009	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
Clarence Valley Open Spaces Strategic Plan 2012	Not relevant. The planning proposal has no direct relevance to this strategy and vice versa.
Clarence Valley Local Strataegic Planning Statement 2020	Priority 13 of the Statement addresses the protection and enhancement of the local agricultural sector and the proposal will enable a business directly related to the surrounding agricultural sector to be established.

1

ANNEXURE D

State Environmental Planning Policy Consistency Checklist

Name of SEPP	Relevant/applicable?	Comment/statement of consistency
		current and whilst not all may be applicable
		I some are considered in more detail where
relevant.		
State Environmental Planning Policy (Primary Production) 2021	Yes	Part 2.1 of the SEPP lists its aims which "aim to facilitate the orderly economic use
(and development of lands for primary
		production." It is proposed to relocate 15
		macadmaia trees within the plantation of
		23,000 and establish a rural supplies
		business servicing, and so enhancing the
		local agriculatural sector.
State Environmental Planning Policy Resources and Energy 2021		N/a
State Environmental Planning Policy	Yes	Clause 4.6 of the Policy states "a consent
(Resilience and Hazards) 2021		authority must not consent to the carrying
		out of any development on lands unless –
		a) It has considred whether the land is contaminated"
		The clause further states:-
		"Before determining an application for
		consent to carry out development that
		would involve a change of use on any of
		the land specified in subsection (4), the
		consent authority must consider a report
		specifying the findings of a preliminary
		investigation of the land concerned
		carried out in accordance with the
		contamined land planning guidelines." As the site has a long history of
		agricultural use including cane cultivation
		and the proposal involves a change of
		use, a Preliminary Site Investigation has
		been prepared and is at Annexure I. The
		investigation included a desktop study
		and soil sampling and testing and
		concluded:
		"On the basis of the PSI findings, the
		investigation area is considered suitable
		for the proposed commercial use, from a contamination perspective."
		The property is mapped as Coastal Use
		Area & Coastal Environmental Area,
		though the actual proposed shed site is
		only mapped as the latter. An assessment
		under Clause 2.10 & 2.11 of the Policy
		are attached at Annexure Q and
		concludes the proposal will have no
State Environmental Dianning Dalia	No	impact on any of their issues therein. N/A
State Environmental Planning Policy (Industry and Employment) 2021		
State Environmental Planning Policy	No	N/A
(Transport and Infrastructure) 2021 State Environmental Planning Policy	No	N/A
(Biodiversity and Conservation) 2021		IVA
State Environmental Planning Policy	No	N/A
(Planning Systems) 2021		

Name of SEPP	Relevant/applicable?	Comment/statement of consistency
State Environmental Planning Policy (Precincts – Eastern Harbour City) 2021	No	N/A
State Environmental Planning Policy (Precincts – Central River City) 2021	No	N/A – no longer applicable as Clause 6 Contamination and remediation to be considered in zoning or rezoning proposal was repealed on 17 April, 2020. Refer to section 9.1 Direction 2.6 Remediation of Contaminated Land in Annexure F below.
State Environmental Planning Policy (Precincts Western Parkland City)	No	N/A
State Environmental Planning Policy (Precincts – Regional) 2021	No	N/A
State Environmental Planning Policy (Housing)	No	N/A
State Environmental Planning Policy (Design Quality of Residential Apartment Development)	No	N/A
State Environmental Planning Policy (Building Sustainability Index BASIX) 2004	No	N/A
State Environmental Planning Policy (Exempt Compying Development Codes) 2008	No	N/A.

ANNEXURE E

SECTION 9.1 DIRECTIONS CONSISTENCY CHECKLIST

SECTION 9.1	CONSISTENCY	COMMENTS
	eveteme	
FOCUS AREA 1. PLANNING 1.1 Implementation of Regional Plans	Inconsistent but Justified	Consistency with the NCRP2036 is assessed at Annexure B and concludes the proposal is consistent with all actions except Action 6.4 where the inconsistency is justified as rural supplies are permissible outside of centres in the RU2 zone, and 11.1 where the inconsistency is justified as the proposed use is an agricultural related use which will benefit the local agricultural sector and both inconsistences are minor significance.
1.2 Development of Aboriginal Land Council land	N/A	Does not include aboriginal land Council land.
1.3 Approval and Referral Requirements	Consistent	Proposal does not require concurrence, consultation or referral to the Minister or public authority, or identify the development as designated
1.4 Site Specific Provisions	Consistent	Does not include restrictive site specific planning controls.
FOCUS AREA 1: PLANNING	SYSTEMS – PLACE	
1.5 Parramatta Road Corridor Urban Transformation Strategy	N/A	This Direction does not apply to the Clarence Valley Council area.
1.6 Implementation of North West Priority Growth Area Land Use and Infrastructure Implementation Plan	N/A	This Direction does not apply to the Clarence Valley Council area.
1.7 Implementation of Greater Parramatta Priority Growth Area Interim Land Use and Infrastructure Implementation Plan	N/A	This Direction does not apply to the Clarence Valley Council area.
1.8 Implementation of Wilton Priority Growth Area Interim Land Use and Infrastructure Implementation Plan	N/A	This Direction does not apply to the Clarence Valley Council area
1.9 Implementation of Glenfield to Macarthur Urban Renewal Corridor	N/A	This direction does not apply to the Clarence Valley Council area.
1.10 Implementation of Western Sydney Aerotropolis Plan	N/A	This Direction does not apply to the Clarence Valley Council area.
1.11 Implementation of Bayside West Precincts 2036 Plan	N/A	This Direction does not apply to the Clarence Valley Council area.
1.12 Implementation of Planning Principals for the Cooks Cove Precinct	N/A	This Direction does not apply to the Clarence Valley Council area.
1.13 Implementation of St Leonards and Crows Nest 2036 Plan	N/A	This Direction does not apply to the Clarence Valley Council area.

SECTION 9.1 DIRECTION	CONSISTENCY	COMMENTS
1.14 Implementation of Greater Macarthur 2040	N/A	This Direction does not apply to the Clarence Valley Council area.
1.15 Implementation of the Pyrmont Peninsula Plan Strategy	N/A	This Direction does not apply to the Clarence Valley Council area.
1.16 North West Rail Link Corridor Strategy	N/A	This Direction does not apply to the Clarence Valley Council area.
1.17 Implementation of the Bays West Place Strategy	N/A	This Direction does not apply to the Clarence Valley Council area.
FOCUS AREA 2: DESIGN AN		
FOCUS AREA 3: BIODIVERS		
3.1 Conservation Zones	N/A	Does not involve conservation zones.
3.2 Heritage Zones	N/A	Does not involve heritage.
3.3 Sydney Drinking Water Catchment	N/A	This Direction does not apply to the Clarence Valley Council area.
3.4 Application of C2 and C3 Zones and Environmental Overlays in Far North Coast LEPs 26	N/A	Does not involve C2 & C3 zones.
3.5 Recreation Vehicle Areas	N/A	Does not involve recreation vehicle area.
FOCUS AREA 4: RESILIENC	E AND HAZARDS	
4.1 Flooding	Consistent	A Flood Report has been prepared and is attached at Annexure K. It concludes that the shed is not likely to have any significant adverse effect or flood affection on other development or properties, and recommend 4 actions to ensure compliance with Councils flood prone land policy. An assessment under Clause 5.21 of CV LEP 2011 is attached at Annexure N. Based on analysis contained in the Flood Report; the proposal complies with CI.5.21 and so is compliant with the relevant flood document referenced in Clause (1) of the Direction. The proposal does not contain provisions which permit any of the matters contained in Clause (3) (a)-(f) of the Direction, will not increase requirements for government spending on the matters listed in Clause (3)(g) as the building is non-habitable and won't be occupied by staff and customers as floods approach, or permit hazardous industries. Any materials stored in the shed (i.e. items for sale) which may be considered hazardous can be stored above the 1 in 100 plus 500mm freeboard level or removed prior to the arrival of the flood.
4.2 Coastal Management	Consistent	The proposal is not inconsistent with the matters listed in Clause (1) of the Direction; is not inconsistent with Clause (2) of the Direction as the site is not within a coastal vulnerability area or affected by coastal hazards; is not inconsistent with Clause (3) of the Direction as the land is not within coastal wetland or littoral rainforest area; and does not propose to alter the maps listed in Clause (4) of the Direction. An assessment of the proposal under Chapter 2 of the SEPP (Resilience & Hazards) 2021 is at Annexure E.

SECTION 9.1	CONSISTENCY	COMMENTS
DIRECTION	Ν1/Δ	Not on hughfire press land
4.3 Planning for Bushfire Protection	N/A	Not on bushfire prone land.
4.4 Remediation of Contaminated Land	Consistent	The land has long-term agricultural use, particularly cane cultivation and soil subject to this Direction. The Preliminary Site Investigation at Annexure I concludes that in respect to contamination the site is suitable for the proposed use. As such, the proposal is consistent with the provisions of Clause (1) of the Direction and complies with Clause (2) through the Preliminary Site Investigation.
4.5 Acid Sulphate Soil	Inconsistent but Justified	The site is mapped as Class 3 ASS and Clause 7.1 of CV LEP 2011 requires an ASS Management Plan to be prepared if more than 1 tonne of soil is disturbed by works 1m below natural ground level or which will lower the watertable unless a preliminary assessment determines that a plan is not required. In this instance more than 1 tonne is likely to be disturbed by the removal of top soil from under the mound extensions and by the provision of underground services. None of these works will be more than 1m below natural ground level or impact on the watertable. Fill for the mound will be sourced from an approved quarry (as was fill for the existing mound) and will be certified and so contain no ASS. As a result, it is considered that an ASS Management Plan is not required. The proposal is inconsistent with the Direction as the site is mapped as ASS, will intensify the use of the site, and an ASS study has not been prepared other than the preliminary assessment under Clause 7.1 of CV LEP 2011. The inconsistency is justified by the Clause 7.1 assessment and under
4.6 Mine Subsidence and	N/A	(b) of the Direction as it is of minor significance. Does not involve subsidence unstable land.
FOCUS AREA 5: TRANSPOR		
5.1 Integrating Land Use and Transport	N/A 	Does not require integrating transport and land use.
5.2 Reserving Land for Public Purposes		Does not involve reserving public land
5.3 Development Near Regulated Airports and Defence Airfields	N/A	Does not involve land near regulated airports and defense airfields
5.4 Shooting Ranges	N/A	Does not involve shooting ranges.
FOCUS AREA 6: HOUSING	Consistent	Doop not involve the provision of housing
6.1 Residential Zones	Consistent N/A	Does not involve the provision of housing.
6.2 Caravan Parks and Manufactured Home Estates		Does not involve caravan parks or MHE's.
FOCUS AREA 7: INDUSTRY		
7.1 Business and Industrial Zones	N/A.	Will result in increased employment outside of an identified centre buy justified as rural supply businesses are permissible in some rural areas.
7.2 Reduction in non-hosted short-term rental	N/A	This Direction does not apply to the Clarence Valley Council area.

SECTION 9.1 DIRECTION	CONSISTENCY	COMMENTS
accommodation period		
7.3 Commercial and Retail Development along the Pacific Highway, North Coast	N/A.	Does not involve the Pacific Highway.
FOCUS AREA 8: RESOURCE	S AND ENERGY	
8.1 Mining, Petroleum Production and Extractive Industries	N/A	Does not involve these industries.
FOCUS AREA 9: PRIMARY PRODUCTION		
9.1 Rural Zones	Consistent	The proposal does not rezone the land to a residential, business, industrial or tourist zone and so is consistent.
9.2 Rural Lands	Inconsistent but Justified	The proposal involves the relocation of 15 trees to elsewhere in the plantation of 23,000 trees. An assessment of the Direction is at Annexure F.
9.3 Oyster Aquaculture	N/A	Does not impact on oyster aquaculture.
9.4 Farmland of State and Regional Significance on the NSW Far North Coast	N/A	The proposal does not rezone land for urban or rural residential use but does permit a business to be established on important farm land supporting the local agriculture sector.

ANNEXURE F

DIRECTION 9.2 RURAL LANDS ASSESSMENT

DIRECTION 9.2 RURAL LANDS ASSESSMENT

- 1. A planning proposal must:
 - a) be consistent with any applicable strategic plan, including regional and district plans endorsed by the Planning Secretary, and any local strategic planning statement.

Comment: Inconsistencies with NCRP 2036 are minor and addressed in Section B (3) of this report. The inconsistences are locating a commercial business outside of a centre which is justified as rural supplies are a permissible use in some rural areas and protecting and enhancing the agricultural sector which the proposal does by locating a rural supplies business servicing that sector within an agricultural area albeit with insignificant loss of agricultural land.

b) consider the significance of agriculture and primary production to the State and rural communities

Comment: The rural supplies business will serve the local agricultural sector at a cost of the loss of an insignificant amount of agricultural land. Farms in the vicinity will benefit from reduced travel times and fuel use to source supplies.

c) identify and protect environmental values, including but not limited to, maintaining biodiversity, the protection of native vegetation, cultural heritage, and the importance of water resources

Comment: No impact, as only plantation trees require relocation.

d) consider the natural and physical constraints of the land, including but not limited to, topography, size, location, water availability and ground and soil conditions

Comment: No impact, existing mound approved by Council will be extended on a level site.

e) promote opportunities for investment in productive, diversified, innovative and sustainable rural economic activities

Comment: The proposal will permit the establishment of an economically viable business.

f) support farmers in exercising tier right to farm

Comment: The proposal will permit a business supporting the local agricultural sector.

g) prioritise effort and consider measures to minimise the fragmentation of rural land and reduce the risk of land use conflict; particularly between residential and land uses and other rural land use.

Comment: The proposed rural supplies business compliments, rather than conflicts with, the local agricultural sector.

 consider State significant agricultural land identified in chapter 2 of the State Environmental Planning Policy (Primary Production) 2021 for the purpose of ensuring the ongoing viability of this land

Comment: Located on important farm land but the relocating of 15 trees to elsewhere in the plantation is outweighed by the benefits of having an agricultural focussed business in this location.

i) consider the social, economic and environmental interest of the community.

Comment: Will have economic benefits for the local agricultural sector with no social or environmental impacts.

ANNEXURE G

CONCEPT PLAN

ANNEXURE H

AHIMS SEARCH

AHIMS Web Services (AWS) Search Result

Purchase Order/Reference : river rd Client Service ID : 568812

Date: 17 February 2021

Rob Donges 2/67 wooli st yamba New South Wales 2464 Attention: Rob Donges

Email: rdongesyamba@icloud.com

Dear Sir or Madam:

<u>AHIMS Web Service search for the following area at Lot : 11, DP:DP1259162 with a Buffer of 200 meters,</u> <u>conducted by Rob Donges on 17 February 2021.</u>

The context area of your search is shown in the map below. Please note that the map does not accurately display the exact boundaries of the search as defined in the paragraph above. The map is to be used for general reference purposes only.

A search of the Office of the Environment and Heritage AHIMS Web Services (Aboriginal Heritage Information Management System) has shown that:

0	Aboriginal sites are recorded in or near the above location.
0	Aboriginal places have been declared in or near the above location. *

If your search shows Aboriginal sites or places what should you do?

- You must do an extensive search if AHIMS has shown that there are Aboriginal sites or places recorded in the search area.
- If you are checking AHIMS as a part of your due diligence, refer to the next steps of the Due Diligence Code of practice.
- You can get further information about Aboriginal places by looking at the gazettal notice that declared it. Aboriginal places gazetted after 2001 are available on the NSW Government Gazette (http://www.nsw.gov.au/gazette) website. Gazettal notices published prior to 2001 can be obtained from Office of Environment and Heritage's Aboriginal Heritage Information Unit upon request

Important information about your AHIMS search

- The information derived from the AHIMS search is only to be used for the purpose for which it was requested. It is not be made available to the public.
- AHIMS records information about Aboriginal sites that have been provided to Office of Environment and Heritage and Aboriginal places that have been declared by the Minister;
- Information recorded on AHIMS may vary in its accuracy and may not be up to date .Location details are recorded as grid references and it is important to note that there may be errors or omissions in these recordings,
- Some parts of New South Wales have not been investigated in detail and there may be fewer records of Aboriginal sites in those areas. These areas may contain Aboriginal sites which are not recorded on AHIMS.
- Aboriginal objects are protected under the National Parks and Wildlife Act 1974 even if they are not recorded as a site on AHIMS.
- This search can form part of your due diligence and remains valid for 12 months.

ANNEXURE I

PRELIMINARY SITE INVESTIGATION (ENV SOLUTIONS, Feb 2022) & CONTAMINATION REPORT

PRELIMINARY SITE INVESTIGATION

Yamba Road, Palmers Island, NSW 2464

ENV216557

For:

Pridel Pty Ltd

By:

ENV Solutions

Date:

18 February 2022

ENV Solutions

313 River Street, Ballina NSW 2478

T: 1300 861 325

E: admin@envsolutions.com.au

www.envsolutions.com.au

DOCUMENT CONTROL

Job No:	ENV216557
Client:	Pridel Pty Ltd
Filename:	216557_1822_Palmers Island SEPP55_20220218

	Name:	Date:	Signature:
Prepared By:	Robert Todhunter	18/02/2022	Romto
Reviewed By:	Ben Pieterse	21/02/2022	fran
Approved By:			

Revision:	Date:	Details:

SCOPE OF ENGAGEMENT AND LIMITATIONS

This report has been prepared by ENV Solutions at the request of Pridel Pty Ltd for the purpose of a SEPP55 – Preliminary Site Investigation. No other parties may rely on the contents of this report for any purposes except those stated.

This report has been prepared based on the information provided to us and from other information obtained as a result of enquiries made by us. ENV accepts no responsibility for any loss or damage suffered howsoever arising to any person or corporation who may use or rely on this document for a purpose other than that described above.

No part of this report may be reproduced, stored, or transmitted in any form without the prior consent of ENV.

ENV declares that it does not have, nor expects to have, a beneficial interest in the subject project.

To avoid this advice being used inappropriately, it is recommended that you consult with ENV before conveying the information to another who may not fully understand the objectives of the report. This report is meant only for the subject site/project and should not be applied to any other.

TABLE OF CONTENTS

1	Int	troduction	1
	1.1	Objective	1
	1.2	Scope of Works	1
	1.3	Technical and Regulatory Framework	1
2	Sit	e Description and Characteristics	3
	2.1	Site Identification Details	3
	2.2	Zoning and Land Use	3
	2.3	Topography and Drainage	3
	2.4	Geology and Soils	3
	2.5	Surface Water Bodies and Flooding	4
	2.6	Groundwater Resources	4
	2.7	Surrounding Environment	4
	2.8	Contaminated Land Record and Record of Notices	4
	2.9	POEO Act Public Register Search	5
	2.10	Cattle Dip Sites	5
	2.11	Historical Aerial Photographs	5
	2.12	Anecdotal Evidence	5
	2.13	Site Inspection	6
3	Со	nceptual Site Model	7
	3.1	Contamination Sources	7
	3.2	Chemicals of Potential Concern	7
	3.3	Potentially Affected Environmental Media	8
	3.4	Potential Migration and Exposure Pathways	8
	3.5	Potential Receptors of Contamination	8
4	Da	ta Quality Objectives	9
	4.1	Step 1: State the Problem	9
	4.2	Step 2: Identify the Decision(s)	9
	4.3	Step 3: Inputs into the Decision(s)	9
	4.4	Step 4: Define the Study Boundaries	9
	4.5	Step 5: Develop the Analytical Approach (Decision Rule)	9
	4.6	Step 6: Specify the Performance or Acceptance Criteria1	0

11

LIST OF TABLES

Table 1: Site Details	3
Table 2: Summary of QA Sample Parameters for Assessing Data Reliability	10
Table 3: Soil Sampling Methodology	12
Table 4: Summary of QA/QC Indicators and Results	14

LIST OF APPENDICES

Appendix A	Figures	

- Appendix B Photolog
- Appendix C Laboratory Results and Documentation
- Appendix D Field QA Results RPD Calculations
- Appendix E VENM Letter

LIST OF ACRONYMS

Below is a list of commonly used acronyms in this report:

COC	Chain of Custody		
COPC	Chemical of Potential Concern		
EILs	Ecological Investigation Levels		
ENV	ENV Solutions		
HILs	Health Investigation Levels		
NEPC	National Environment Protection Council		
NEPM	National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013)		
NSW EPA	New South Wales Environment Protection Authority		
OCPs	Organochlorine Pesticides		
PCBs	Polychlorinated Biphenyls		
QA/QC	Quality Assurance and Quality Control		

EXECUTIVE SUMMARY

ENV Solutions has undertaken a preliminary site investigation (PSI) for LOT 11 DP1259162, Yamba Road, Palmers Island, NSW, 2464 (hereafter referred to as the 'site'). ENV understands that the PSI has been requested to support a development application for construction of a commercial premises at the site, in accordance with the requirements under the State Environmental Planning Policy (SEPP) No 55.

The PSI included the following components:

- A desktop review of the site conditions, history and surrounding environment;
- Identification of past and present potentially contaminating activities and chemicals of potential concern (COPC);
- An inspection of the site and adjacent areas of land;
- Development of a preliminary conceptual site model (CSM);
- Collection of soil samples from eight discrete sampling locations within the proposed commercial premises curtilage covering a total area of 4,500m² (the Investigation Area);
- Assessment of the soil analytical results against relevant Tier 1 investigation levels detailed in the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, as amended 2013 (NEPC, 2013); and
- Assessment of the environmental suitability of the site for the proposed commercial land use.

From the desktop review, a preliminary CSM was developed. The preliminary CSM identifies potential contamination sources associated with the historic and current land uses; COPC which may be attributable to these sources; potential receptors of contamination on and near the site; and potential exposure pathways linking the contamination sources with the receptors.

The investigation area has historically been utilised as a farm 'pad'. The desktop study found the investigation area currently features a shed in the northern portion of the site, with the proposed construction of a similar sized shed adjacent to the south. Considering that the site has been used for agricultural purposes, potential sources of contamination primarily include the use of pesticides and fertilisers, along with petroleum products and hydraulic fluids from machinery. As such, identified COPC included organochlorine pesticides, polychlorinated biphenyl, petroleum compounds and metals (e.g. arsenic, lead), and potentially affected environmental media were deemed to primarily comprise surface soils.

A site inspection and soil sampling program were undertaken on 15 February 2022, with no olfactory or visible signs of contamination observed with exception of minor bitumen inclusions (location of sample S-8). Soil samples were collected from the upper soil stratum (0 to 0.2 mBGL) at eight (8) discrete locations, including from the batter, allowing access to 'deeper' soils below the recent fill level.

Laboratory analysis results reported COPC concentrations at all sample locations were less than the adopted assessment criteria which incorporated human and ecological health criteria for industrial/commercial landuse as presented in the *NEPM* (NEPC, 2013).

On the basis of the PSI findings, the investigation area is considered suitable for the proposed commercial use, from a contamination perspective.

1 INTRODUCTION

ENV Solutions was engaged by Pridel Pty Ltd (the Client) to complete a preliminary site investigation (PSI) for LOT 11 DP1259162, Yamba Road, NSW (hereafter referred to as the 'site'). ENV understands that the PSI has been requested to support a commercial business development application at the site in accordance with the requirements under the State Environmental Planning Policy (SEPP) No 55.

This PSI has been prepared in general accordance with the requirements of the NSW EPA (2020) document entitled *Consultants Reporting on Contaminated Land (Contaminated Land Guidelines)*, and the *Northern Rivers Regional Policy for the Management of Contaminated Land* (Northern Rivers Regional Councils, 2007). The completed 'Contamination Report Summary Table' has been provided as a separate document to this report.

1.1 Objective

The objective of the PSI was to assess the potential for contamination to exist at the site as a result of historical or current land uses; and if further investigation and/or remediation is required for the site to be considered suitable for proposed commercial land use, from a chemical perspective.

1.2 Scope of Works

The PSI included the following components:

- A desktop review of the site conditions, history and surrounding environment;
- Identification of past and present potentially contaminating activities and chemicals of potential concern (COPC);
- An inspection of the site and adjacent areas of land;
- Development of a preliminary conceptual site model (CSM);
- Collection of soil samples from eight discrete sampling locations within the proposed commercial premises curtilage covering a total area of 4,500 m² (the Investigation Area);
- Assessment of the soil analytical results against relevant Tier 1 investigation levels detailed in the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, as amended 2013 (NEPC, 2013); and
- Assessment of the environmental (chemical) suitability of the site for the proposed residential land use.

1.3 Technical and Regulatory Framework

The following technical and regulatory framework has been considered in preparing this PSI:

- Contaminated Land Management Act 1997 (CLM Act);
- Environmental Planning and Assessment Act 1979;
- Managing Land Contamination Planning Guidelines SEPP 55 Remediation of Land (Department of Urban Affairs and Planning & NSW Environment Protection Authority [EPA], 1998);
- Sampling Design Guidelines (NSW EPA, 1995);

- National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, as amended 2013 (NEPC, 2013);
- Consultants Reporting on Contaminated Land (Contaminated Land Guidelines) (NSW EPA, 2020);
- AS 4482.1-2005 Guide to the sampling and investigation of potentially contaminated soil Non-volatile and semi-volatile compounds (Australian Standard, 2005); and
- Regional Policy for the Management of Contaminated Land (Northern Rivers Regional Councils, 2007).

2 SITE DESCRIPTION AND CHARACTERISTICS

2.1 Site Identification Details

Table 1 provides an overview of relevant identification details for the site. The site location is depicted in Figure 1 and Figure 2, Appendix A.

Table 1: Site Details

Site Address	Yamba Road, Palmers Island, NSW 2464	
Real Property Description	Lot 11, DP1259162	
Site Area	4,500m ²	
Investigation Area	4,500m ² (proposed commercial premises curtilage)	
Local Government Area	Clarence Valley Council	
Existing Land Use	Agriculture	
Proposed Land Use	Commercial	

2.2 Zoning and Land Use

The site is zoned RU1 – Primary Production under the Clarence Valley Local Environment Plan (LEP) (2011). The following land uses are permitted without consent within an RU1 zone: environmental protection works; extensive agriculture; forestry; home-based childcare; home businesses; home industries; home occupations; horticulture; and viticulture. An excerpt of Clarence Valley Council's land-use zoning map is provided as Figure 3, Appendix A.

The site is currently used for agricultural activities. At the time of this investigation, the site features one large shed situated on a farm 'pad'.

2.3 Topography and Drainage

The investigation area comprises a filled area and has an elevation of approximately 4m Australian Height Datum (AHD) and is relatively flat. Surface water drains either to the west towards the Clarence River, or to the east into an ephemeral drainage line which feeds the Romiaka Channel. The Romiaka Channel is a tributary of the Clarence River.

2.4 Geology and Soils

The NSW Department of Planning, Industry and Environment's eSPADE v2.1 webapp maps the site to be situated within the Palmers Island soil landscape (9539pa). The Palmers Island soil landscape can is summarised as follows:

 Soils – deep (>200 cm), poorly drained Melacic Sulfidic/Sulfuric Redoxic Hydrosols (affinity with Prairie Soils) that consist of moderately well-drained Black Kandosols overlying wet Sulfidic/Sulfuric D horizons.

 Geology - Quaternary (Holocene) marine sediments of undetermined depth overlain by 1-2 m of alluvium derived from inland sediments. The marine sediments are generally potential acid sulfate soil materials.

Site observations during the sampling program noted medium grain, pale brown sandy clays, consistent with the fill reported to have been used on the site (refer Section 2.12).

2.5 Surface Water Bodies and Flooding

An unnamed ephemeral drainage line runs from the eastern side of Yamba Road, adjacent to the site flowing to the south, feeding into the Romiaka Channel, approximately 700m to the south-east of the site. The Romiaka Channel is a tributary of the Clarence River, and both the Romiaka Channel and Clarence River support freshwater ecosystems. The site is raised off the surrounding land, and surface water may also drain west over a flat field into the Clarence River.

The site has been raised from the surrounding landscape, but still sits at a low AHD, with poorly draining areas around it. The site may be prone to flooding in extreme weather events.

2.6 Groundwater Resources

A search of the WaterNSW Realtime groundwater database was completed on 10 February 2022. The search did not identify any licensed bores within a 500 m radius of the site of the site.

2.7 Surrounding Environment

The site is located south of the Palmers Island Village. Land use immediately surrounding the site can be summarised as:

- North: Agriculture (crop)
- South: Agriculture/ agriculture (crop)
- East: Agricultural (crop)
- West: Agricultural (crop)

2.8 Contaminated Land Record and Record of Notices

The NSW EPA Contaminated Land Record (EPA Notifications) contains a list of sites which have been notified to the NSW EPA under the Contaminated Land Management Act 1997 (CLM Act). Upon receiving the notification, the EPA then assesses the contamination status of the site and decides whether the contamination is significant enough to warrant formal regulation by the EPA in accordance with the provisions of the CLM Act. The NSW EPA Record of Notices contains selected information about sites which have been issued with a Regulatory Notice by the NSW EPA under the CLM Act.

The NSW EPA Contaminated Land Record and Record of Notices were searched on 10 February 2022. No records for the area of Palmers Island, were listed in the databases (NSW EPA, 2021).

2.9 POEO Act Public Register Search

The Protection of the Environment Operations Act 1997 (POEO Act) Public Register contains information about environment protection licences, licence applications, notices issued under the POEO Act, and pollution studies and reduction programs. The POEO Act Public Register was searched on 10 February 2022 for the area of Palmers Island, with no records identified on Yamba Road.

2.10 Cattle Dip Sites

The NSW DPI's cattle dip site locator was searched on 10 February 2022. One dip site was listed within a 1km radius of the site, at an unknown point on Middle Road. Middle road is located 400 m away from the site at its nearest point. Considering the minimum distance this cattle dip could be located from the site, the risk of any potential contamination from the dip site impacting the subject site is negligible.

2.11 Historical Aerial Photographs

A review of four (4) aerial photographs (dated 1966, 1971, 1989 and 1998) was undertaken to assess changes in land use at the site and immediate surrounds. Aerial photographs were accessed through the NSW Historical Imagery Viewer.

The review of historical aerial photographs indicates that the site has been used for agricultural activities (cropping) since at least 1966. Sometime between 1971 and 1989, a farm 'pad' was constructed at the site.

The review did not identify any historical structures in the investigation area. Historical land use of nearby properties include agriculture and rural residential. Copies of the historical aerial photographs are provided as Figure 4 to Figure 7, Appendix A.

2.12 Anecdotal Evidence

Information provided to ENV by the client indicates that additional fill material has recently been imported to the site to further raise the pad for future use. It is understood that some historically imported soil may comprise 'uncontrolled fill'. More recently, an earthworks contractor has imported Virgin Excavated Natural Material (VENM) from Newman Quarry, Jackybulbin NSW. A letter from the earthworks contractor stating that imported soil comprises VENM is provided as Appendix E.

Surrounding the site to the south, west and north are juvenile macadamia trees, roundup is used to control grass and weed growth between and under the trees. Biological control is largely used to control pests on the trees.

2.13 Site Inspection

A site inspection was undertaken by ENV on 15 February 2022, concurrent with the soil sampling program.

When the inspection was conducted, the investigation area featured a raised fill pad with a shed in the northern portion of the fill pad.

At the time of inspection there were no signs that would indicate that it had been contaminated (i.e. unnatural odours, soil discolouration or vegetation stress).

3 CONCEPTUAL SITE MODEL

The information presented in the previous sections pertaining to the site characteristics, history and surrounding environment, has been used to identify potential contamination sources from historic and current activities on the subject site; COPC associated with these sources, plausible receptors of contamination at the site and in off-site areas, and exposure pathways linking the contamination sources and receptors. This information is brought together in what is known as a conceptual site model, which is presented in the following sub-sections.

3.1 Contamination Sources

Historical and current land use of the site includes agricultural crop production. The area under investigation is currently largely cleared with a large industrial shed on the northern section of the site, with the proposed construction of an adjacent similar sized shed to its south. The desktop study and site history review found that there had been no previous structures present on the site. The site was though (prior to at least 1989) used for agricultural crop production, before being filled for use as a farm 'pad'. At least some fill materials imported to the pad are suspected to comprise uncontrolled fill.

Considering that the immediate surrounds of the site have previously and are currently being used for agricultural purpose and likely for parking of heavy machinery while used as a farm pad, potential sources of contamination include the use of pesticides and fertilisers on crops and leaks and spills of petroleum compounds and hydraulic fluids and import of contaminated soils (uncontrolled fill).

No other off-site sources of contamination, likely to have affected the environmental condition of the subject site, have been identified.

3.2 Chemicals of Potential Concern

The COPC associated with identified contamination sources are summarised in Table 3.

Table 3: Summary of Chemical of Potential Concern

Chemical	Comments	
Metals and metalloids:	Associated with the use of paint, mechanical	
 Arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc. 	equipment, and importation of uncontrolled fill material.	
Organochlorine pesticides (OCPs),	Associated with the importation of uncontrolled fill	
organophosphorus pesticides (OPPs), , and phenols	material, and application of pesticides beneath and around structures and hardstand.	
Polychlorinated Biphenyls (PCB)	Associated with leaks and spills of hydraulic fluids	
Petroleum Compounds:	Associated with leaks and spills of petroleum	
 Total recoverable hydrocarbons (TRH): F1: C6- C10 minus BTEX; F2: >C10-C16 minus Naphthalene; F3: >C16-C34; and F4: >C34-C40 	products.	
 Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene (BTEXN) 		
 Polycyclic Aromatic Hydrocarbons (PAH) 		

It is noted that organophosphate pesticides (OPPs) and other pesticides may have historically been applied to areas used for agricultural activities, however, OPPs are known to rapidly degrade in soil over a period of several days to weeks.

3.3 Potentially Affected Environmental Media

Potentially affected environmental media include surface soils and fill horizons. While other environmental media may be affected by the contamination sources described above, surface and fill soils are considered the most likely media to be directly impacted by the presence of potential contamination sources. If the surface soils at the site are contaminated, it is possible that also other environmental media have been impacted, which will then require further investigation.

3.4 Potential Migration and Exposure Pathways

Potential migration pathways depend on a number of factors including the chemical properties of the contaminant, soil texture, topography, and hydraulic gradient of shallow groundwater etc.

The significance of different exposure pathways depends on the chemical properties of the contaminant.

Potential migration pathways for identified COPC include:

- Volatilisation;
- Generation of dust;
- Infiltration, percolation and groundwater flow;
- Stormwater run-off; and
- Plant uptake and bioaccumulation.

Subsequently, potential exposure pathways include:

- Direct contact (ingestion or dermal) with contaminated environmental media;
- Inhalation of dust and vapours;
- Ingestion of food grown in contaminated soils; and
- Direct toxicity for plants and terrestrial/aquatic ecosystems.

3.5 Potential Receptors of Contamination

Potential receptors of contamination have been identified as:

- Future staff and visitors (customers) on-site;
- Future construction workers on-site; and
- Terrestrial ecosystems on-site.

It is noted that the potential for off-site receptors to be exposed to contamination originating from the site depends on the nature and extent of the contamination, soil properties, local surface water and groundwater hydrology, and distance to the receptors. If contamination is identified on-site, additional investigations may be required to identify and assess the risk to potential off-site receptors.

4 DATA QUALITY OBJECTIVES

4.1 Step 1: State the Problem

The purpose of the preliminary site investigation is to assess the potential for contamination to exist as a result of current or previous land use within the 4,500m² investigation area.

4.2 Step 2: Identify the Decision(s)

The principal decisions (questions) for this investigation are:

- What are the current and previous land uses at the site and is there a potential for contamination to exist as a result of associated land use activities?
- What are the COPC associated with current and historical land uses?
- Do the concentrations of COPC exceed relevant assessment criteria for the protection of potential receptors?
- Is the investigation area suitable for proposed commercial land use from a contamination perspective, or is further investigation and/or remediation required?

4.3 Step 3: Inputs into the Decision(s)

To address the decisions in Step 2, the following activities were completed:

- A desktop review of relevant and available information, to gain an understanding of site characteristics, history and potential receptors, as well as to identify gaps in the existing data;
- An inspection of the site and surrounding areas; and
- Soil sampling and laboratory analysis of COPC.

4.4 Step 4: Define the Study Boundaries

The study boundaries covered the area of the proposed building envelope, with a total area of 4,500m² The extent of the soil sampling program is referred to as the 'investigation area', and is depicted in Figure 2, Appendix A.

In terms of temporal boundaries, the site inspection and soil sampling program were undertaken over the course of one day, and therefore provides a snapshot only of the current soil conditions.

4.5 Step 5: Develop the Analytical Approach (Decision Rule)

The number of discrete soil sampling locations required for site characterisation was determined in accordance with NSW EPA (1995) and with reference to the size of the investigation area. Samples were collected using a systematic sampling pattern and involved the collection of soil samples from eight (8) discrete locations, including from the fill pad batter, allowing for horizontal access to 'deeper' soils beneath the recent filling level. Soil samples were collected from the upper soil stratum (0-0.15 m below ground level [BGL]) and laboratory analysis results compared to generic (Tier 1) investigation levels presented in the *NEPM* (NEPC, 2013).

To characterise the site, the following statistical measures were adopted, with the results compared to the adopted assessment criteria:

Maximum observed contaminant concentration of each COPC

The precision (reproducibility), accuracy, representativeness and overall reliability of the data sets were assessed using the indicators presented in Table 2. This included the collection of appropriate quality assurance (QA) samples during soil sampling activities, and internal QA testing conducted by the analytical laboratories. The QA sampling regime was adopted in accordance with the *NEPM* (NEPC, 2013) and Australian Standard (1999 and 2005).

QA Sample Type	Media	Frequency	Acceptable Range of Results			
Field Samples	Field Samples					
Intra-laboratory duplicate	Soil	1 per 20 primary samples	Relative percent difference (RPD) ≤50%			
Inter-laboratory duplicate	Soil	1 per 20 primary samples	RPD ≤50%			
Laboratory Samples						
Internal duplicate	Soil	1 per 10 primary samples	Laboratory specified			
Matrix Spike	Soil	1 per sampling batch (20 samples)	Laboratory specified			
Surrogate Spike	Soil	1 per sampling batch (20 samples)	Laboratory specified			
Control Sample	Soil	1 per sampling batch (20 samples)	Laboratory specified			
Laboratory Blank	Soil	1 per sampling batch (20 samples)	Results <lor< td=""></lor<>			

Table 2: Summary of QA Sample Parameters for Assessing Data Reliability

4.6 Step 6: Specify the Performance or Acceptance Criteria

Assessment criteria were adopted from the Tier 1 investigation levels outlined in *Schedule B(1) Guideline on Investigation Levels For Soil and Groundwater* (NEPC, 2013) and included:

- Health investigation levels (HILs): exposure setting D commercial/industrial. The HIL-D levels were selected based on the proposed commercial business land use.
- Health screening levels (HSLs): exposure setting D commercial/industrial, consistent with current and proposed land use. HSLs for a sand soil texture and a sample depth of 0-1 mBGL were adopted.
- Ecological investigation levels (EILs) for commercial and industrial land-use. This land-use setting is broadly equivalent to the HIL-D land use scenario. Site-specific EILs were calculated for selected metals (considered to be 'aged' contamination (≥2 years)) using the NEPM toolbox/EIL calculator. For these calculations, reasonably expected default values were adopted for pH, cation exchange capacity (CEC), clay content and total organic carbon (TOC), based on modelled soil properties in eSPADE¹ (Environment, Energy and Science, 2021). Generic EILs presented in the NEPM (2013) were also adopted for selected chemicals.

¹ Soil properties used for EIL calculations: CEC of 15 cmolc/kg dwt, pH of 5, clay content of 25%, and organic carbon content (OC) of 2%.

 Ecological screening levels (ESLs): exposure setting – commercial/industrial, consistent with current and proposed land use. ESLs also considered a coarse soil texture and a sample depth of 0-2 mBGL.

4.7 Step 7: Optimise the Design for Obtaining Data

The sampling regime was designed to collect soil data from both fill used within the investigation area and historic surface material with reference to the proposed land use and environmental setting of the site. The design incorporated guidance and requirements presented in NEPC (2013) and Australian Standard (2005), as well as other current industry standards relating to the objectives of the assessment. To optimise the design of the investigation, the sampling and analytical program was devised to specifically target information required to meet the PSI objectives.

5 SITE INVESTIGATION METHODOLOGY

5.1 Overview

A site inspection and soil sampling program were undertaken on 15 February 2022. The aim of the site inspection was to assess the current condition of the site; and record any visible signs of contamination and potential contamination sources not identified by the desktop review.

With exception of minor bitumen inclusions at the location of sample S-8, no observable discolouration, vegetation stress or anthropogenic refuse was observed, and no noticeable unnatural odours encountered.

5.2 Soil Sampling and Analysis Plan

The soil sampling program comprised the collection of soil samples from the upper soil stratum (0-0.2 mBGL) at eight discrete locations within the investigation area. Samples collected from the batter allowed for access to soils below the fill layer.

Sampling locations are depicted in Figure 2, Appendix A. The soil sampling methodology is summarised in Table 3.

Activity	Details		
Sampling	 Soil samples were collected from eight (8) discrete locations established based on a systematic sampling pattern across the investigation area. At each discrete sampling location, soil was loosened with a shovel and samples collected using a fresh pair of disposable nitrile gloves. Organic matter such as leaves and twigs were removed from the sample as much as practically possible prior to collection. Samples were collected by an appropriately qualified Environmental Scientist from ENV Solutions. 		
Field QA Samples	 Field duplicates were collected and analysed in accordance with NEPC (2013) and Australian Standard (2005). One set of QA duplicates was collected. 		
Laboratory Analysis	 All primary and duplicate samples were analysed for identified COPC. 		
Sample Preservation and Transport	 Samples were placed in laboratory-supplied sample jars, with no headspace. Each sample was labelled with the project number, sampling date and unique sample identifier, and immediately placed into a chilled esky with ice, pending dispatch to the laboratory. Samples were transported to a laboratory accredited by the National Association of Testing Authorities (NATA) for the required analysis, and with accompanying chain of custody (COC) documentation. 		
Decontamination Procedure	 Any reusable equipment was cleaned between sampling locations using a triple wash procedure. This involved washing with phosphate-free detergent (Decon 90), and final rinsing in potable water. 		

Table 3: Soil Sampling Methodology

5.3 Justification of Sampling Design and Analysis Plan

Justification for the sampling design and analysis plan is as follows:

- The number of discrete sampling locations was established in accordance with the Sampling Design Guidelines (NSW EPA, 1995) and based upon the proposed building envelope of 2,000 m².
- The design plans provided by the client indicate that an area of up to 4,500m² will be rezoned from RU1 (primary production and rural) to RU2 (rural landscape) under this DA.
- The sampling density was considered appropriate in consideration of the adopted COPC, the likely diffuse application of these chemicals to soils (if at all) (i.e. no hotspots of contamination likely) and the results reported for the site areas where no development or cropping has occurred.
- Field-based sampling locations, including stratum and depth, were based on the results of the site history review and identified COPC.
- COPC include contaminants that are persistent in the environment; and are recognised as having been used historically in the Northern Rivers region for the following purposes:
 - Broadscale application of pesticides and fertilisers for agricultural production (i.e., OCPs, metals)
 - Usage of mechanical equipment and hydraulic fluids (i.e. petroleum compounds and PCBs).

6 **RESULTS**

6.1 Field Results

Observed surface soils consisted of well drained medium grain, pale brown Krasnozems (sandy clays), with some gravels mixed into the fill in the northern section of the site. With exception of minor bitumen inclusions at the location of sample S-8, no observable discolouration, vegetation stress or anthropogenic refuse was observed and no noticeable unnatural odours encountered.

Photos taken during site inspection and soil sampling procedures provided in Appendix B.

6.2 Laboratory Analysis Results

Laboratory analysis results for soil samples are tabulated and provided in Appendix D, along with the laboratory issued reports and certificates.

A review of the analytical results indicates that all reported COPC concentrations are less than the adopted assessment criteria for all samples, with the majority of analytes occurring at concentrations below the limit of reporting or consistent with background levels. No statistical analysis of the dataset was required.

6.3 QA/QC Results

Quality assurance and quality control (QA/QC) involved an assessment of the completeness, comparability, representativeness, precision and accuracy of the investigation and collected data. QA/QC indicators and results are presented in Table 4.

QA/QC Indicator	Compliance	Details
Details of Sampling Team	Yes	 Field sampling was undertaken by an ENV appropriately qualified Environmental Scientist, Craig Helbig.
Sampling Plan Adhered To	Yes	 All planned samples were collected and hence a complete dataset obtained.
Decontamination of Equipment	Yes	 Reusable equipment was cleaned between sampling locations using a triple wash procedure. This involved preliminary washing with potable water, further washing with phosphate-free detergent (Decon 90), and final rinsing in clean, de-ionised water.
Sample Collection	Yes	 Laboratory supplied jars used (no headspace). Collected samples placed in cooler box with ice. Each sample labelled with a unique sample ID. Samples collected in accordance with the methodology detailed in Section 5.2.
Chain of Custody	Yes	 COC was completed with full and demonstrable delivery of samples. COC documentation is presented in Appendix C.
Holding Times	Yes	 Samples analysed within the laboratory specified holding times.

Table 4: Summary of QA/QC Indicators and Results

QA/QC Indicator	Compliance	Details
Sufficient Duplicates Analysed	Yes	 Field duplicate (intra-laboratory) collected in accordance with NEPC (2013) and Australian Standard (2005), with a ratio exceeding 2 duplicates per 20 primary samples. Field duplicates were collected at sampling location S4.
Field Duplicate Results – Relative Percentage Difference (RPD)	Yes	 RPD calculated between the primary sample and each of the corresponding duplicates. The calculated RPDs are tabulated and presented in Appendix D. The calculated RPDs QA1A and sample S4 exceeded 50% (>50%) for the analytes of arsenic, chromium, copper, lead and zinc.
Analyses NATA accredited	Yes	 Samples analysed by Envirolab in Sydney, which is NATA accredited for the analyses required.
Laboratory Internal QC	Yes	 Satisfactory internal quality control data reported. Analytical methods used are presented in the Laboratory Reports, Appendix C.

6.4 Summary of Data Usability

The calculated RPDs for sample pair S4 and QA1A exceeded the acceptable threshold of \leq 50% for the analytes of arsenic, chromium, copper, lead and zinc. On the basis that the measured concentrations of these analytes in both samples were either near to the limit of reporting or substantially lower than the guideline values in accordance with *NEPM* (NEPC, 2013), the reproducibility, accuracy and representativeness of the analytical results is considered suitable to meet the objectives of this assessment and there remains sufficient confidence in the primary dataset. All other calculated RPDs were less than the threshold of \leq 50% providing further confidence in the dataset and in turn the finding of this report.

7 DISCUSSION AND CONCLUSION

Historical and current land use of the site includes agricultural crop farmland. The investigation area comprises a raised fill pad with a newly constructed shed in the northern portion.

The desktop study and site history review did not identify any previous or current on-site structures excluding the existing shed. Considering that the site has been used for agricultural purposes, potential sources of contamination primarily include the use of pesticides and fertilisers and use of heavy machinery and import of uncontrolled fill. As such, identified COPC included organochlorine pesticides, metals (e.g. arsenic, lead), petroleum compounds and PCBs and potentially affected environmental media were deemed to primarily comprise surface and fill soils.

A site inspection and soil sampling program were undertaken on 15 February 2022, with no olfactory or visible signs of contamination observed. Soil samples were collected from the upper soil stratum (0 to 0.2 mBGL) at eight (8) discrete locations, including from the batter to access 'deeper' soils.

Considering that soils showed no exceedances of relevant criteria and with reference to the homogeneity of soils at the site (imported fill) along with site observations, the samples taken within the building footprint are deemed to appropriately represent the larger area to be rezoned within this DA.

Laboratory analysis results reported that the maximum COPC concentrations at all sample locations were less than the adopted assessment criteria presented in the *NEPM* (NEPC, 2013) and selected based on the proposed land use (commercial)

On the basis of the PSI findings, the investigation area is considered suitable for the proposed commercial use, from a contamination perspective.

8 REFERENCES

Clarence Valley Council (2011). *Clarence Local Environmental Plan (LEP) 2011*. available at: https://legislation.nsw.gov.au/view/whole/html/inforce/current/epi-2011-0701

National Environment Protection Council (NEPC), 2013. *National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999* (as amended 2013). Commonwealth of Australia: <u>http://nepc.gov.au/nepms/assessment-site-contamination</u>

Northern Rivers Regional Councils, 2007. *Regional Policy for the Management of Contaminated Land*. Lismore City Council: <u>https://www.lismore.nsw.gov.au/page.asp?f=RES-DCH-50-44-15</u>

NPIC, 2019. *2,4-D General Fact Sheet.* National Pesticide Information Centre, United States of America: <u>http://npic.orst.edu/factsheets/24Dgen.html</u>

NSW Environment Protection Authority (EPA), 1995. *Sampling Design Guidelines*. NSW Government: <u>https://www.epa.nsw.gov.au/-/media/epa/corporate-</u>

site/resources/clm/95059sampgdlne.pdf?la=en&hash=A3DCD536EA746E30A8F47B14FE6F043620A9 78B0

NSW Environment Protection Authority (EPA), 2020. *Consultants Reporting on Contaminated Land (Contaminated Land Guidelines).* NSW Government: <u>https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/contaminated-land/20p2233-consultants-reporting-on-contaminated-land-guidelines.pdf?la=en&hash=EBB6758A2DE448534B6FDD5057D280523E423CC7</u>

NSW Department of Planning, Industry and Environment, 2020. *eSPADE v.2.1*. NSW Government: <u>https://www.environment.nsw.gov.au/eSpade2Webapp</u>

NSW Department of Primary Industries (DPI), n.d. *Cattle dip site locator*. NSW Government: <u>https://www.dpi.nsw.gov.au/animals-and-livestock/beef-cattle/health-and-disease/parasitic-and-protozoal-diseases/ticks/cattle-dip-site-locator</u>

NSW Historical Imagery Viewer, n.d. *Historical Imagery, Search and Discovery.* NSW Government: <u>https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bcc</u> <u>ddda8075238cb</u>

Standards Australia, 1999 & 2005. *AS* 4482.1-2005 Guide to the sampling and investigation of potentially contaminated soil – Non-volatile and semi-volatile compounds. Standards Australia: <u>https://www.saiglobal.com/pdftemp/previews/osh/as/as4000/4400/4482.1-2005.pdf</u>

APPENDIX A

Figures

Project: Preliminary Site Investigation Client: Pridel Pty Ltd ENV Project Number: 216557

Investigation Area (approximate)

Sample Locations (approximate)

Current Shed Location (approximate)

Proposed Shed Location (approximate)

Figure 2 – Sample Locations Lot 11 Yamba Road, Palmers Island, NSW 2464

> Project: Preliminary Site Investigation Client: Pridel Pty Ltd ENV Project Number: 216557

Investigation area (approximate)

Figure 3 – Land Use Zoning Map Lot 11 Yamba Road, Palmers Island, NSW 2464

> Project: Preliminary Site Investigation Client:Pridel Pty Ltd ENV Project Number: 216557

Investigation area (approximate)

Figure 4 – Historical Aerial Photograph from 1966 Lot 11 Yamba Road, Palmers Island, NSW 2464

> Project: Preliminary Site Investigation Client: Pridel Pty Ltd ENV Project Number: 216557

Investigation area (approximate)

Figure 5 – Historical Aerial Photograph from 1971 Lot 11 Yamba Road, Palmers Island, NSW 2464

> Project: Preliminary Site Investigation Client: Pridel Pty Ltd ENV Project Number: 216557

LEGEND

Investigation area (approximate)

Figure 6: Historical Aerial Photograph from 1989 Lot 11 Yamba Road, Palmers Island, NSW 2464

> Project: Preliminary Site Investigation Client: Pridel Pty Ltd ENV Project Number: 216557

LEGEND

Investigation area (approximate)

Figure 7: Historical Aerial Photograph from 1998 Lot 11 Yamba Road, Palmers Island, NSW 2464

> Project: Preliminary Site Investigation Client: Pridel Pty Ltd ENV Project Number: 216557

APPENDIX B

Photolog

ENV Solutions ENVIRONMENTAL ASE			RESOURCE RECOVERY	I	PHOTOGRA	APHIC LOG
Client Na	me		S	ite Location	Project	
Pridel Pty	Pridel Pty Ltd Lot			d, Palmers Island	, NSW 2464	Preliminary Site Investigation
Photo No.	Dat	e				
1	18/02/2	2022		1400	r a	
Description Image looking n Yamba Road, sl existing shed an adjacent to the s	nowing the	•				

Photo No.	Date	There a	- ANA	Contra -	1000	La !	A.S.
2	18/02/2022		9	and the	W. C.Y		
Description				A M		Lille.	
Image showing	surface soils	and an a					the second
							ar al
		SF					
		554			a con	a ye	104

ENVICONMENTAL ASE		DIATION RESOURCE RECOVERY	PHOTOGRA	APHIC LOG
Client Na	me	Si	te Location	Project
Pridel Pty	Ltd	Lot 11 Yamba Road	d, Palmers Island, NSW 2464	Preliminary Site Investigation
Photo No.	Date	e The file	A Salar	ALL AND ALL AND A
3	1/02/20	022	A. A. A.	A same for

5	1/02/2022		1 million and	- And - 3	S. Contraction (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Description		E alle to	100 miles	- There	7 32
Image showing	surface soils	a with the second	and the second	1 55 - 1 - 1	
			State State	provide the form	Mar at
		13	To state		N'S SAL
		A CONTRACT		A DELTARS	
		- ANT -	a anti-tens an		
					a states
		The	- Andrew		a second
			The A	antin "	- Ale
		Cating 1		A Th	
			1	CNM Fr	ALA STATIS
		1 44 6 -		To be Mar	
			State State &	and the set	

2

ENV	
Solutions 🦊	
ENVIRONMENTAL ASBESTOS	S REMEDIATION RESOURCE RECOVERY

PHOTOGRAPHIC LOG

Client Name

Pridel Pty Ltd

Site Location Lot 11 Yamba Road, Palmers Island, NSW 2464 Project

Preliminary Site Investigation

APPENDIX C

Laboratory Results and Documentation

					Me	tals			
		Arsenic	Cadmium	Chromium (III+VI)	Copper	Fead	Mercury	Nickel	⇒ Zinc
EQL		mg/kg 4	mg/kg 0.4	mg/kg	mg/kg	mg/kg	mg/kg 0.1	mg/kg	mg/kg
	e 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand	4	0.4	1	1	1	0.1	1	1
	ulated site specific EIL - Comm/Ind	160		1300	350	1800		730	1000
	e 1B(6) ESLs for Comm/Ind, Coarse Soil	100		1300	330	1000		750	1000
	e 1A(1) HILs Comm/Ind D Soil	3,000	900		240,000	1,500	730	6,000	400,000
Field ID	Date				,000	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
S1	1/02/2022	5	<0.4	14	10	11	<0.1	7	34
S2	1/02/2022	<4	<0.4	3	2	4	<0.1	<1	7

31	1/02/2022	5	<0.4	14	10	11	NU.1	,	54
S2	1/02/2022	<4	<0.4	3	2	4	<0.1	<1	7
S3	1/02/2022	4	<0.4	11	11	10	<0.1	7	41
S4	1/02/2022	4	<0.4	11	9	9	<0.1	8	24
S5	1/02/2022	<4	<0.4	5	<1	6	<0.1	1	7
S6	1/02/2022	<4	<0.4	8	4	7	<0.1	4	22
S7	1/02/2022	<4	<0.4	7	<1	6	<0.1	1	4
S8	1/02/2022	<4	<0.4	4	5	5	<0.1	3	15

Environmental Standards

2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil

2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

				BTEX					T	РН	
	Naphthalene (BTEX)	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	603	C10-C14	C15-C28	C29-C36
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	1	0.2	0.5	1	2	1	3	25	50	100	100
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand		3 3 3 3					230				
NEPM 2013 calculated site specific EIL - Comm/Ind	370										
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil		75	135	165			180				
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil											
Field ID Date											
S1 1/02/2022 S2 1/02/2022 S3 1/02/2022											
S2 1/02/2022											
S3 1/02/2022											
									1	1	
S4 1/02/2022											
S4 1/02/2022 S5 1/02/2022 S6 1/02/2022											

<0.5

<1

<2

<1

<3

<25

<50

<100

280

<1

<0.2

Environmental Standards

S7

S8

2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil

1/02/2022

1/02/2022

2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

					т	PH			
		010-92 mg/kg	917-017 mg/kg	CIG-C34 mg/kg	Ba Argum of total) Argum of total)	8월 210-C40 (Sum of total) 8월	mg/kg	ady ²⁶ F1 (C6-C9 minus BTEX)	ප් රී F2 (>C10-C16 minus Naphthalene) කි
EQL		25	50	100	50	50	100	25	50
) Comm/Ind D Soil HSL for Vapour Intrusion, Sand							260 370 630	
	site specific EIL - Comm/Ind								
) ESLs for Comm/Ind, Coarse Soil		170	1,700			3,300	215	170
NEPM 2013 Table 1A(1									
Field ID	Date								
S1	1/02/2022								
S2	1/02/2022								
C 2	4 /00 /0000								

S2	1/02/2022								
S3	1/02/2022								
S4	1/02/2022								
S5	1/02/2022								
S6	1/02/2022								
S7	1/02/2022								
S8	1/02/2022	<25	<50	280	280	580	300	<25	<50

Environmental Standards

2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

												
				•		•	РАН	-		•	<u>.</u>	
		Benzo(b+j+k)fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL		0.2	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand											
NEPM 2013 calculated	d site specific EIL - Comm/Ind											
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil						1.4					
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil											
Field ID	Date											
\$1	1/02/2022											
S2	1/02/2022		1									
S3	1/02/2022	Ï		İ								
S4	1/02/2022											
S5	1/02/2022											
S6	1/02/2022											
S7	1/02/2022											

< 0.1

< 0.1

< 0.1

<0.05

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

<0.2

< 0.1

Environmental Standards

S8

2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

1/02/2022

									Halogenated
				PAH			Asbestos	NA	Benzenes
		Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	PAHs (Sum of positives)	Asbestos fibres	Moisture Content	Hexachlorobenzene
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Detect	%	mg/kg
EQL		0.1	0.1	0.1	0.1	0.05		0.1	0.1
NEPM 2013 Table 1A(3) 0	Comm/Ind D Soil HSL for Vapour Intrusion, Sand								
NEPM 2013 calculated sit	te specific EIL - Comm/Ind		370						
NEPM 2013 Table 1B(6) E	SLs for Comm/Ind, Coarse Soil								
NEPM 2013 Table 1A(1) H	HLs Comm/Ind D Soil								80
Field ID	Date			•		•			
S1	1/02/2022							22	<0.1
S2	1/02/2022							11	<0.1

S2	1/02/2022							11	<0.1
S3	1/02/2022							20	<0.1
S4	1/02/2022							22	<0.1
S5	1/02/2022							12	<0.1
S6	1/02/2022							10	<0.1
S7	1/02/2022							9.1	<0.1
S8	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.05	0	2.6	<0.1

Environmental Standards

2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

						Organochlori	ine Pesticides				
		4,4-DDE	a-BHC	Aldrin	→ BHC	Chlordane (cis)	Chlordane (trans)	d-BHC	aa	001	DDT+DDE+DDD
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(3)) Comm/Ind D Soil HSL for Vapour Intrusion, Sand										
NEPM 2013 calculated	site specific EIL - Comm/Ind									640	
NEPM 2013 Table 1B(6)) ESLs for Comm/Ind, Coarse Soil										
NEPM 2013 Table 1A(1)) HILs Comm/Ind D Soil										3,600
Field ID	Date										
S1	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S2	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S3	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S4	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S5	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S6	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S7	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S8	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Environmental Standards

2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

				Organachlar	ino Bosticidos				
				Grganochion	ine resticides				
Dieldrin	endosulfan I	indosulfan II	endosulfan sulphate	Indrin	endrin aldehyde	z-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor
	mg/kg	mg/kg				mg/kg	mg/kg		mg/kg
		0.1		0.1	0.1	0.1	0.1	0.1	0.1
0.1	0.1	0.1							
0.1	0.1	0.1	012						
0.1	0.1	0.1							
				100			50		2,500
				100			50		2,500
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2,500
					<0.1 <0.1	<0.1 <0.1		<0.1 <0.1	· · · · · · · · · · · · · · · · · · ·
<0.1	<0.1	<0.1	<0.1	<0.1			<0.1		<0.1
<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1
<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1
<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1
	iii joi mg/kg	mg/kg mg/kg	mg/kg mg/kg mg/kg	Dieldrin Endosulfan Endosulfan Endosulfan	Dieldrin Endrin Endrin Baybate Endrin Baybate	Dieldrin Dieldrin Endrin aldehyde Endrin aldehyde Bayleb mg/kg mg/kg mg/kg mg/kg mg/kg	BHC (Lind Berld BHC (Lind BHC (Lind	Dieldrin Dieldrin Endossulfan Endossulfan Endossulfan BHC (Lindane) BHC	Dieldrin Dieldrin Endosulfan Bykg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg BHC (Lindane) BHC (Lindane) BH

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

<0.1

< 0.1

Environmental Standards

S8

2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

1/02/2022

	PCBs									
	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)		
	mg/kg									
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand										
NEPM 2013 calculated site specific EIL - Comm/Ind										
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil										
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil								7		
Field ID Date										
S1 1/02/2022										

S1	1/02/2022								
S2	1/02/2022								
S3	1/02/2022								
S4	1/02/2022								
S5	1/02/2022								
S6	1/02/2022								
S7	1/02/2022								
S8	1/02/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Environmental Standards

2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

ENVIRO	DLAB	CHA	IN C	F CUST	'OD)Y	- C	lie	nt						1		y St, Cha	tswood	, NSW 20	167 rolab.com.au	
GROUP		ENVIF	ROLAB	GROUP - N	ation	al pho	one ni	umþe	r 130	0 42 /	43 44	I.				Perth La					
Client: ENV S	olutions	-			Client	: Proje	ct Nam	e / Ńu	mber /	Site e	tc (ie r	eport t	itle):		16-18 Hayden Crt Myaree, WA 6154 Ph 08 9317 2505 / lab@mpl.com.au						
Contact Pers	on: Craig Helbig (CAH)				216557									<u>Melbourne Lab</u> - Envirolab Services							
Project Mgr:	САН				PO No.:								1	A Dalm	ore Driv	e Scores	sby VIC 3:	179			
Sampler: CA	ť`						iote No	_												nvirolab.com.au	
Address: 313	Idress: 313 River St, Ballina, NSW				Or ch	oose: :	requir standa lab in ad	r d	if urgen	t turnai	round is	require	d - surc	harges	2 P A	<u>Brisbane Office</u> - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au Adelaide Office - Envirolab Services					
Phone:	•	Mob: 04!	55151426			rt form	at: esd	at 👘						:		a The Pa b 0406	arade, N 350 706	lorwood / adela	l, SA 506) ide@env	7 irolab.com.au	
Email:	craig@	envsolutio	ns.com.au		Lab C	omme	nts:						- 19- ¹	:				, uacia			
	Sample i	nformation						1			Tesi	ts Requ	ired							Comments	
Envirolab Sample ID	Client Sample ID or information	Depth (m)	Date sampled	<u>Type of sample</u>	OCPs/8 metals	Combo 5a														Provide as much information about (sample as you ca	
fred of	S1	0-0.2	1/02/2022	Soil	х							S t	_		· .						
4	S2	0-0.2	1/02/2022	[:] Soil	x			ł				_	-								
3	S3	0-0.2	1/02/2022	, Soil	×				<u> </u>									<u></u>			
Ч	S4	0-0.2	1/02/2022	Soil	x											EC. 44	80.0		12 Asn		
5	S5	0-0.2	1/02/2022	Soil	x	<u> </u>	<u> </u>									-	<u> </u>	Ph:	02) 991(6200	
6	S6	0-0.2	1/02/2022	Soil	x		<u> </u>										l <u>o:</u>	28	79	3.3	
1	<u>57</u>	0-0.2	1/02/2022	Soil	x	ļ	ļ		L							1 .ife	-eceiv	<u>d: -2</u>	12	22	
. 8	S8	0-0.2	1/02/2022	<u>Soil</u>	ļ	x	<u> </u>		 							Ting	Receiv		634	<u>}</u>	
9	QA1	0-0.2	1/02/2022	Soil	×		<u> </u>		<u> </u>						L	Ľ.,	By	AB-			
	QA1A	0-0.2	1/02/2022	Soil	Please	forward	to Eur	ofins Si	/D for a	nalysis (of OCPs/	/8 meta	s		r —	COUNT			}		
	· · · · · · · · · · · · · · · · · · ·	· 		· · - · - · - · - · - · - · - · - · - ·	 	┣			<u> </u>							Secur	t.,	\vdash] <u>;</u>		
		·				<u> </u>	 		<u> </u>												
	by (Company): ENV Solut	tions	II						EV I	Ы	D		· · · · · ·			se only		\sim	<u> </u>		
Print Name: (Print I			m	_									$\mathbf{\nabla}$		ent (circle one)	
Date & Time:	2/2/2022 - 4 pm			·	Date 8		-A		22	(0)	50				Tempe	erature	e Recei	ved at	:7	(if applicable)	

Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

White - Lab copy / Blue - Client copy / Pink - Retain in Book Page No:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	ENV Solutions Pty Ltd
Attention	Craig helbig

Sample Login Details		
Your reference	216557	
Envirolab Reference	287933	
Date Sample Received	03/02/2022	
Date Instructions Received	03/02/2022	
Date Results Expected to be Reported	10/02/2022	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	9 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	7
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils
S1-0-0.2				\checkmark		\checkmark	
S2-0-0.2				\checkmark		\checkmark	
S3-0-0.2				\checkmark		\checkmark	
S4-0-0.2				\checkmark		\checkmark	
S5-0-0.2				\checkmark		\checkmark	
S6-0-0.2				\checkmark		\checkmark	
S7-0-0.2				\checkmark		\checkmark	
S8-0-0.2	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓
QA1-0-0.2				\checkmark		\checkmark	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 287933

Client Details	
Client	ENV Solutions Pty Ltd
Attention	Craig helbig
Address	313 River St, Ballina, NSW, 2478

Sample Details	
Your Reference	<u>216557</u>
Number of Samples	9 Soil
Date samples received	03/02/2022
Date completed instructions received	03/02/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 10/02/2022

 Date of Issue
 10/02/2022

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Dragana Tomas, Senior Chemist Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor Thomas Beenie, Lab Technician Thomas Lovatt, Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		287933-8
Your Reference	UNITS	S8
Depth		0-0.2
Date Sampled		1/02/2022
Type of sample		Soil
Date extracted	-	04/02/2022
Date analysed	-	04/02/2022
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	102

svTRH (C10-C40) in Soil		
Our Reference		287933-8
Your Reference	UNITS	S8
Depth		0-0.2
Date Sampled		1/02/2022
Type of sample		Soil
Date extracted	-	04/02/2022
Date analysed	-	10/02/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	280
Total +ve TRH (C10-C36)	mg/kg	280
TRH >C10-C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	280
TRH >C ₃₄ -C ₄₀	mg/kg	300
Total +ve TRH (>C10-C40)	mg/kg	580
Surrogate o-Terphenyl	%	76

PAHs in Soil		
Our Reference		287933-8
Your Reference	UNITS	S8
Depth		0-0.2
Date Sampled		1/02/2022
Type of sample		Soil
Date extracted	-	04/02/2022
Date analysed	-	04/02/2022
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	97

Organochlorine Pesticides in soil						
Our Reference		287933-1	287933-2	287933-3	287933-4	287933-5
Your Reference	UNITS	S1	S2	S3	S4	S5
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		1/02/2022	1/02/2022	1/02/2022	1/02/2022	1/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022	04/02/2022
Date analysed	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022	04/02/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	82	79	84	84	83

Organochlorine Pesticides in soil					
Our Reference		287933-6	287933-7	287933-8	287933-9
Your Reference	UNITS	S6	S7	S8	QA1
Depth		0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		1/02/2022	1/02/2022	1/02/2022	1/02/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022
Date analysed	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	81	79	85	86

PCBs in Soil		
Our Reference		287933-8
Your Reference	UNITS	S8
Depth		0-0.2
Date Sampled		1/02/2022
Type of sample		Soil
Date extracted	-	04/02/2022
Date analysed	-	04/02/2022
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	85

Acid Extractable metals in soil						
Our Reference		287933-1	287933-2	287933-3	287933-4	287933-5
Your Reference	UNITS	S1	S2	S3	S4	S5
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		1/02/2022	1/02/2022	1/02/2022	1/02/2022	1/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022	04/02/2022
Date analysed	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022	04/02/2022
Arsenic	mg/kg	5	<4	4	4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	3	11	11	5
Copper	mg/kg	10	2	11	9	<1
Lead	mg/kg	11	4	10	9	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	<1	7	8	1
Zinc	mg/kg	34	7	41	24	7

Acid Extractable metals in soil					
Our Reference		287933-6	287933-7	287933-8	287933-9
Your Reference	UNITS	S6	S7	S8	QA1
Depth		0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		1/02/2022	1/02/2022	1/02/2022	1/02/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022
Date analysed	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022
Arsenic	mg/kg	<4	<4	<4	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	7	4	12
Copper	mg/kg	4	<1	5	8
Lead	mg/kg	7	6	5	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	1	3	7
Zinc	mg/kg	22	4	15	25

Moisture						
Our Reference		287933-1	287933-2	287933-3	287933-4	287933-
Your Reference	UNITS	S1	S2	S3	S4	S5
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		1/02/2022	1/02/2022	1/02/2022	1/02/2022	1/02/202
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022	04/02/202
Date analysed	-	05/02/2022	05/02/2022	05/02/2022	05/02/2022	05/02/202
Moisture	%	22	11	20	22	12
Moisture						
Our Reference		287933-6	287933-7	287933-8	287933-9	
Your Reference	UNITS	S6	S7	S8	QA1	
Depth		0-0.2	0-0.2	0-0.2	0-0.2	
Date Sampled		1/02/2022	1/02/2022	1/02/2022	1/02/2022	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	04/02/2022	04/02/2022	04/02/2022	04/02/2022	
Date analysed	-	05/02/2022	05/02/2022	05/02/2022	05/02/2022	
Moisture	%	10	9.1	2.6	18	

Asbestos ID - soils		
Our Reference		287933-8
Your Reference	UNITS	S8
Depth		0-0.2
Date Sampled		1/02/2022
Type of sample		Soil
Date analysed	-	07/02/2022
Sample mass tested	g	Approx. 60g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected
Trace Analysis	-	No asbestos detected

Method ID	_ Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" of<="" pahs="" pahs"="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
	the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)/	BTEXN in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	
Date analysed	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	86	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	86	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	79	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	92	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	83	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	87	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	84	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	98	[NT]		[NT]	[NT]	97	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	
Date analysed	-			10/02/2022	[NT]		[NT]	[NT]	10/02/2022	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	91	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	79	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	109	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	91	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	79	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	109	
Surrogate o-Terphenyl	%		Org-020	85	[NT]		[NT]	[NT]	93	

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	287933-8
Date extracted	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	04/02/2022
Date analysed	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	04/02/2022
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97	99
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	95
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	93
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	116	118
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	118	125
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	111	133
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	83	81
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	122	108
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	86	[NT]		[NT]	[NT]	102	115

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	287933-8
Date extracted	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	04/02/2022
Date analysed	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	04/02/2022
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	78
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	93
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	87
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	87
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	96
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	115
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110	126
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	98
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	114
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	102
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	84	[NT]		[NT]	[NT]	84	84

QUALITY CONTROL: PCBs in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	287933-8
Date extracted	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	04/02/2022
Date analysed	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	04/02/2022
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	91	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	84	[NT]		[NT]	[NT]	84	84

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	287933-8	
Date prepared	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	04/02/2022	
Date analysed	-			04/02/2022	[NT]		[NT]	[NT]	04/02/2022	04/02/2022	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	95	93	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	97	83	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	99	89	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	97	105	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	88	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	100	110	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	96	87	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	100	93	
Client Reference: 216557

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Client Reference: 216557

Quality Contro	N Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 287933-8 was sub-sampled from a jar provided by the client.

e e	🛟 eurofins				Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	Ltd		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: www.eurofins.com.au email: EnviroSales@eurofins.com		Testing	6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254			Road /e West +61 2 99	1/21 Smallwood Place 4/52 Ind Murarrie QLD 4172 Mayfield 2066 Phone : +61 7 3902 4600 PO Box 0 NATA # 1261 Site # 20794 Phone :	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290			
Compa Addres	any Name: ss:	ENV Solution 1/35 North C Ballina NSW 2478					R¢ Pl	rder I eport hone: ax:	860708 0421 519 354		Received: Due: Priority: Contact Name:	Feb 3, 2022 2:23 PM Feb 10, 2022 5 Day Craig Helbig	1	
Project Project	et Name: et ID:	216557 216557								E	Eurofins Analytical S	ervices Manager : Jol	nn Nguyen	
		Sa	mple Detail			Organochlorine Pesticides	Metals M8	Moisture Set						
		ry - NATA # 12		4		×								
		NATA # 1261		1		X	X	X						
		- NATA # 126 - NATA # 1261												
-		ATA # 2377 Sit												
	Laboratory							1						
	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
		Feb 01, 2022		Soil	S22-Fe08179	Х	Х	Х						
Test Cou	unts					1	1	1						

ENV Solutions Pty Ltd 1/35 North Creek Road Ballina NSW 2478

Attention:

Craig Helbig

Report Project name Project ID Received Date

860708-S 216557 216557 Feb 03, 2022

Client Sample ID			QA1A
Sample Matrix			Soil
Eurofins Sample No.			S22-Fe08179
Date Sampled			Feb 01, 2022
Test/Reference	LOR	Unit	1 00 01, 2022
Organochlorine Pesticides	LOR	Unit	
Chlordanes - Total	0.1	ma/ka	< 0.1
4.4'-DDD	0.05	mg/kg mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-HCH	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-HCH	0.05	mg/kg	< 0.05
d-HCH	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05
Toxaphene	0.5	mg/kg	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1
Dibutylchlorendate (surr.)	1	%	102
Tetrachloro-m-xylene (surr.)	1	%	122
Heavy Metals			
Arsenic	2	mg/kg	3.5
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	11
Copper	5	mg/kg	7.7
Lead	5	mg/kg	8.5
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	7.6
Zinc	5	mg/kg	32

Iac-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID Sample Matrix			QA1A Soil
Eurofins Sample No.			S22-Fe08179
Date Sampled			Feb 01, 2022
Test/Reference	LOR	Unit	
% Moisture	1	%	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides	Sydney	Feb 07, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Feb 07, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Feb 07, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

🛟 eurofins			/	Eurofins Environme ABN: 50 005 085 521 Melbourne		sting /	Austra	a Pty Lto	Brisbane	Newcastle	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth	Eurofins Environment NZBN: 9429046024954 Auckland	Auckland Christchurch		
web: www.eurofins.com.au email: EnviroSales@eurofins.com		lesting	6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254		Unit F3, Building F 175 16 Mars Road Lane Cove West NSW 2066			1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
	mpany Name: dress:	ENV Solutior 1/35 North C Ballina NSW 2478					Re Pl	rder I eport hone: ax:		860708 0421 519 354		Received: Due: Priority: Contact Name:	Feb 3, 2022 2:23 PM Feb 10, 2022 5 Day Craig Helbig	Λ	
	oject Name: oject ID:	216557 216557										Eurofins Analytical S	Services Manager : Jo	hn Nguyen	
			mple Detail			Organochlorine Pesticides	Metals M8	Moisture Set							
	ourne Laborato			4		×	×	×							
	ey Laboratory · bane Laboratory			1		X	X	X							
	ield Laboratory														
	Laboratory - N							1							
	rnal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
		Feb 01, 2022		Soil	S22-Fe08179	Х	Х	Х							
Test	Counts					1	1	1							

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

onito		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank			 		
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery				1 400	
Organochlorine Pesticides					
Chlordanes - Total	%	86	70-130	Pass	
4.4'-DDD	%	76	70-130	Pass	
4.4'-DDE	%	90	70-130	Pass	
4.4'-DDT	%	87	70-130	Pass	
a-HCH	%	82	70-130	Pass	
Aldrin	%	86	70-130	Pass	
b-HCH	%	87	70-130	Pass	
d-HCH	%	93	70-130	Pass	
Dieldrin	%	94	70-130	Pass	
Endosulfan I	%	90	70-130	Pass	
Endosulfan II	%	82	70-130	Pass	
Endosulfan sulphate	%	85	70-130	Pass	
Endrin	%	94	70-130	Pass	
Endrin aldehyde	%	72	70-130	Pass	
Endrin ketone	%	88	70-130	Pass	
g-HCH (Lindane)	%	90	70-130	Pass	
	/0	1 30	10-100	1 035	

		% %	82			70-130	Pass	
		%						I
			90			70-130	Pass	
		%	78			70-130	Pass	
		%	93			80-120	Pass	
		%	100			80-120	Pass	
		%	98			80-120	Pass	
		%	100			80-120	Pass	
		%	95			80-120	Pass	
		%	80			80-120	Pass	[
		%	101			80-120	Pass	
	QA							Qualifying
Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
			I			1	r	
1			Result 1					
S22-Fe09099	NCP	%	92			70-130	Pass	
S22-Fe09099	NCP	%	79			70-130	Pass	
S22-Fe09099	NCP	%	95			70-130	Pass	
S22-Fe09099	NCP	%	95			70-130	Pass	
S22-Fe09099	NCP	%	92			70-130	Pass	
S22-Fe09099	NCP	%	92			70-130	Pass	
S22-Fe09099	NCP	%	92			70-130	Pass	
S22-Fe09099	NCP	%	93			70-130	Pass	
S22-Fe09099	NCP	%	107			70-130	Pass	
S22-Fe09099	NCP	%	95			70-130	Pass	
S22-Fe09099	NCP	%	87			70-130	Pass	
S22-Fe09099	NCP	%	92			70-130	Pass	
S22-Fe09099	NCP	%	104			70-130	Pass	[
S22-Fe09099	NCP	%	102			70-130	Pass	[
S22-Fe09099								
0221000000		/0	00			10 100	1 400	
			Result 1					
S22-Fe08215	NCP	%				75-125	Pass	
	1 1							
	1 1							
	1 1							
	1 1							
Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	Source		l			Linits	Linits	Code
			Result 1	Result 2	RPD			
S22-Fe00401	NCP	ma/ka				30%	Pass	
	S22-Fe09099 S22-Fe08215 S22-Fe08215 S22-Fe08215 S22-Fe08215 S22-Fe08215 S22-Fe08215 S22-Fe08215 S22-Fe08215	Source S22-Fe09099 NCP S22-Fe08215 NCP	% \$22-Fe09099 NCP % \$22-Fe09099 NCP % \$22-Fe09099 NCP \$22-Fe09099 NCP \$22-Fe09099 NCP \$22-Fe09099 NCP % \$22-Fe09099 NCP \$22-Fe09099 NCP \$22-Fe09099 NCP \$22-Fe09099 NCP \$22	% 100 % 95 % 80 % 101 % 102 Lab Sample ID QA Source Units Result 1 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 95 S22-Fe09099 NCP % 95 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 93 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 92 <	% 100 % 95 % 80 % 101 % 102 Lab Sample ID QA Source Units Result 1 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 95 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 93 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 92 S22-Fe09099 NCP % 92 <	% 100 % % 95	% 100 80-120 % 95 80-120 % 80 80-120 % 101 80-120 % 102 80-120 Lab Sample ID QA Source Units Result 1 Acceptance Limits S22-Fe09099 NCP % 92 70-130 S22-Fe09099 NCP % 95 70-130 S22-Fe09099 NCP % 95 70-130 S22-Fe09099 NCP % 92 70-130 S22-Fe09099 NCP % 92 70-130 S22-Fe09099 NCP % 92 70-130 S22-Fe09099 NCP % 93 70-130 S22-Fe09099 NCP % 93 70-130 S22-Fe09099 NCP % 92 70-130 S22-Fe09099 NCP % 92 70-130 S22-Fe09099 NCP % 92 70-130	% 100 80-120 Pass % 95 80-120 Pass % 80 80-120 Pass % 101 80-120 Pass % 102 80-120 Pass Lab Sample ID O.A. Nits Result 1 Acceptance Limits S22-Fe09099 NCP % 92 70-130 Pass S22-Fe09099 NCP % 95 70-130 Pass S22-Fe09099 NCP % 95 70-130 Pass S22-Fe09099 NCP % 92 70-130<

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Aldrin	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-Fe09401	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S22-Fe09401	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Fe08214	NCP	mg/kg	4.2	6.4	40	30%	Fail	Q15
Cadmium	S22-Fe08214	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Fe08214	NCP	mg/kg	16	26	47	30%	Fail	Q15
Copper	S22-Fe08214	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S22-Fe08214	NCP	mg/kg	6.5	8.9	31	30%	Fail	Q15
Mercury	S22-Fe08214	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-Fe08214	NCP	mg/kg	5.1	7.8	42	30%	Fail	Q15
Zinc	S22-Fe08214	NCP	mg/kg	18	30	50	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S22-Fe08175	NCP	%	7.2	7.2	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

 Code
 Description

 Q15
 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

John Nguyen Andrew Sullivan John Nguyen Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

APPENDIX D

Field QA Results - RPD Calculations

			Me	tals			-
mg/kg	Cadmiu m mg/kg	mg/kg	vadoo oo mg/kg	pea- mg/kg	Mercury mg/kg	Ia Nicke mg/kg	Zinc mg/kg
		····6/ **6		···6/ K5		···6/ *6	···6/ K5
4	0.4	1	1	1	0.1	1	1

Lab Report Number	Field ID	Date	Matrix Type								
287933	S4	1/02/2022	Soil	4	<0.4	11	9	9	<0.1	8	24
287933	QA1	1/02/2022	Soil	4	<0.4	12	8	10	<0.1	7	25
RPD				0	N/A	9	12	11	N/A	13	4
287933	S4	1/02/2022	Soil	4	<0.4	11	9	9	<0.1	8	24
287933 860708	S4 QA1A	1/02/2022 1/02/2022	Soil Soil	4	<0.4 0.4	11 5	9 5	9 5	<0.1	8	24 5

Notes:

EQL

RPD: Relative Percent Difference (50% Variance Threshold) EQL: Estimate Quantaition Limit N/A: RPD Could Not Be Calculated

NA					OCPs					
Moisture Content	Hexachlorobenzene	4,4-DDE	а-ВНС	Aldrin	Ь-ВНС	Chlordane (cis)	Chlordane (trans)	р-внс	aaa	DDT
%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Lab Report Number	Field ID	Date	Matrix Type											
287933	S4	1/02/2022	Soil	22	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
287933	QA1	1/02/2022	Soil	18	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
RPD				20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N D				20	N/A	IN/A	19/6	N/A	N/A	19/5	19/5	14/11	14/71	14/11
N'D				20	N/A	IVA	17/6	19/6	19/6	N/A	N/A			
287933	S4	1/02/2022	Soil	20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	S4 QA1A	1/02/2022 1/02/2022	Soil Soil	22				,			,		,	

Notes:

EQL

RPD: Relative Percent Difference (50% Variance Threshold) EQL: Estimate Quantaition Limit N/A: RPD Could Not Be Calculated

					OCPs					
ααα+3αα+Δαα	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Lab Report Number	Field ID	Date	Matrix Type											
287933	S4	1/02/2022	Soil	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
287933	QA1	1/02/2022	Soil	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
RPD				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
				IN/A	N/A	19/6	19/5	14/11	N/A	N/A	14/11	14/71	14/71	14/11
<u></u>				N/A	N/A	17/6	19/6	,,,	19/4	NA		,/		
287933	S4	1/02/2022	Soil	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	S4 QA1A	1/02/2022 1/02/2022	Soil Soil	· · ·				,				,		

Notes:

EQL

RPD: Relative Percent Difference (50% Variance Threshold) EQL: Estimate Quantaition Limit N/A: RPD Could Not Be Calculated

APPENDIX E

VENM Letter

01/10/2020

To whom it may concern,

SA & JL Anderson Pty Ltd (Anderson Tipper Hire) have supplied VENM Fill Sand (virgin excavated natural material) to Lot 11 DP 1259162 Yamba Road, Palmers Island NSW 2463. The product was supplied from Newman Quarry, Jackybulbin NSW.

DA Approval Number: DA 2020/0216 Name: PRIDEL P/L

Yours sincerely

Scott Anderson

SA & JL Anderson Pty Ltd Anderson Tipper Hire 17 Citrus Close JAMES CREEK NSW 2463 0408452230

ANNEXURE J

SUMMARY TABLE

Northern Rivers Contaminated Land Program - Contamination Report Summary Table

Property description and address			Page no.
e.g. Lot and DP, map of entire site as well as the investigation area	ı(s)		3, Appendix A
Conceptual Site Model			
e.g. Contamination sources, receptors and exposure pathways bet	ween sources and rece	ptors	7-9
Sampling and Analysis Quality Plan (SAQP)			
Justification for the sampling design (how will the data be represented	ntative and relevant)		13
Frequency and pattern of sampling			12
Justification for analytical plan (especially if the project uses comp	osite samples)		12
Data quality objectives			12
Sampling Methodology			
Description of sample methodology			12
Description of media sampled and sample depth interval (e.g. bore	ehole logs, or soil descr	iption)	14
Notable contaminant concentrations e.g. maximum specific conc	entrations and validation	ion results	
Soil and groundwater concentrations and comparison against app	ropriate EIL, HIL, HSL ar	nd GILs etc.	Appendix C
Discussion on QA/QC			15
Statistical analysis			Appendix C, D
Nature of works carried out			
e.g. soil investigation, ground water investigation, excavation, on- validation sampling, backfilled with imported soil with ENM classif		val of soil,	1
Nature and extent of residual contamination			
Contamination identified in investigation, contamination unable to the work, or areas not assessed	be remediated within	the scope of	14
Waste removed			
During remediation (details of classification and disposal)			N/A
Remediation Summary			
What was removed or treated? Was it successful, is residual conta for an ongoing Environmental Management Plan?	mination remaining? Is	there a need	N/A
Appropriately experienced and qualified practitioners			
Practitioner is appropriately experienced and qualified with adequinsurance for the work undertaken	ate professional indem	nity (PI)	YES
Statement of suitability			
The land is considered suitable for [residential, residential with lim industrial/commercial] land use, other (describe).	nited soil access, open s	pace,	YES
Report details			
Report title: SEPP 55 PSI Report Palmers Island			
Produced by: Declan Campey	ABN	N: 98 640 278 97	7
Provided to Client: 22 / 02 / 2022			
I Declan Campey of ENV Solutions state that I have undertaken the and approved by the NSW Environment Protection Authority.	his assessment in acco	dance with the	guidelines made
Name: Declan Campey	Signature: DC		
Contact details: Declan.campey@envsolutions.com.au	0431055009		

ANNEXURE K

FLOOD IMPACT ASSESSMENT REPORT (STRUCTERRE, JANUARY 2022)

Flood Impact Assessment Report

4 River Road

Palmers Island, NSW

Lot 11 in DP 1259162

28th January 2022

Bruce Hammond BEng. Civil. MIE (Aust) NER

Garth Cook BEng. Civil. (Hons)

BYRON BAY | YAMBA

Yamba Office: Unit 7-11, 18 Coldstream Street, Yamba NSW 2464 Phone: 0437 904 790 Byron Bay Office: 5/61 Centennial Circuit, Byron Bay 2481 PH: (02) 6680 7510 Web: www.NRSCE.com.au Email: Admin@nrsce.com.au ABN: 63 619 141 310 Structerre CJA Pty Ltd trading as Northern Rivers Structerre Consulting Engineers

TABLE OF CONTENTS

1.	INTRODUCTION	. 3
2.	SITE SPECIFIC FLOOD INFORMATION	. 3
3.	COUNCIL REQUIREMENTS	. 5
4.	EXISTING SITE	.6
5.	PROPOSED DEVELOPMENT	.6
6.	FLOOD IMPACT ASSESSMENT	.7
7.	CONCLUSION	11

1. Introduction

Structerre Consulting Engineers being competent to practice in the field of stormwater design & flood mitigation has been engaged to prepare a Flood Impact Assessment to accompany a Development Application submitted to Clarence Valley Council for the proposed filling within Lot 11 in DP1259162.

The subject site has been identified by Council as flood affected according to and shown on council's online mapping system "Intramaps".

The following documentation has been used in the preparation of this Report;

- Detailed Survey, A. Fletcher & Associates Pty Ltd, 11.02.2021. Rev A.
- Flood Information available on Clarence Valley Council's "Intramaps".
- Google Earth Aerial Imagery

This report provides flooding assessment specific to the subject site.

2. Site Specific Flood Information

The flood information for the site is provided by Clarence Valley Council's "Intramaps"& Detailed Survey by, A. Fletcher & Associates Pty Ltd. Due to the size of the lot the 100 year flood level varies, the figures shown below are for the area immediately adjacent to the location of the proposal.

- 20 Year Flood Level (min) RL.2.18m
- 20 Year Flood Level (max) RL.2.29m

Note that the 20 Year Flood Level of RL2.18m has been adopted for this Assessment.

- 100 Year Flood Level (min) RL.2.51m
- 100 Year Flood Level (max) RL.2.61m

Note that the 100 Year Flood Level of RL2.51m has been adopted for this Assessment.

- 100 Year Flood Velocity 0.18m/s (rear of mound)
- 100 Year Flood Velocity 0.26m/s (front of mound)

Note that the since no data is available for 20 year flood velocities the 100 year data will be used.

- Natural Ground Level RL.0.92 m RL.1.08m, average taken as RL.1.0m (rear of mound)
- Natural Ground Level RL.1.38 RL.1.82 average taken as RL.1.6m (front of mound)
- Ground Level RL.2.25m on existing mound/ pad.
- Percentage of existing site inundated by the 100 year flood, 100% by councils Intramaps.

Figure 1. 20 Year Flood Levels https://maps.clarence.nsw.gov.au/intramaps97/

Figure 2. 100 Year Flood Levels https://maps.clarence.nsw.gov.au/intramaps97/

3. Council Requirements

Council requires that clause 7.3(3) from the CVC LEP is addressed prior to giving consent;

(3) Development consent must not be granted to development on land to which this clause applies unless the consent authority is satisfied that the development—

(a) is compatible with the flood hazard of the land, and

(b) is not likely to significantly adversely affect flood behaviour resulting in detrimental increases in the potential flood affectation of other development or properties, and

(c) incorporates appropriate measures to manage risk to life from flood, and

(d) is not likely to significantly adversely affect the environment or cause avoidable erosion, siltation, destruction of riparian vegetation or a reduction in the stability of river banks or watercourses, and

(e) is not likely to result in unsustainable social and economic costs to the community as a consequence of flooding.

4. Existing Site

The existing site consists of recently built farm shed constructed on an existing flood mound/pad (DA 2020/0216 & CC2020/0187). The pad is at a level of about RL2.25 The location is immediately adjacent to the 60km/hr speed on Yamba Road as you enter the Palmers Island school zone. See attached Concept Dwg. No. 9561 SHED DA showing details. The site area is some 4,500m2. The entire lot is 41.53ha.

The site generally falls toward the west, away from Yamba Road. Open drains exist on the western and northern sides of the existing mound, there is partial open drainage on the north east and south east corners which forms part of the road drainage, this drains under the road to the east.

Figure 3. Site Plan. Google Earth, viewed 28.01.2022.

5. Proposed Development

A proposed rural supplies business is to be constructed adjacent to a recently built farm shed. The proposed rural supplies shed will be the same size (36m x 20m) as the existing shed. The proposed development involves the filling to provide earthworks pads/ flood mounds at a level above the 20 year flood.

The pad will be filled to an average of RL2.25m, RL2.18 min, which is the 20 year flood level. The carpark will be filled to RL1.75m, which is above the 5 year flood event.

6. Flood Impact Assessment

Each of council's requirements set out in chapter three will addressed below.

(3) Development consent must not be granted to development on land to which this clause applies unless the consent authority is satisfied that the development—

(a) is compatible with the flood hazard of the land.

The Velocity of the Floodwaters is relativity slow, the following shows the Velocity x Depth Product for the site for the 20 and 100 year flood. Note that it is unlikely for any personnel to be at the rear of the mound in any flood event.

<u>20 Year</u>

Rear of Mound (bottom) 20 Year Flood Velocity, 0.18m/s, Average Overland Flood Depth 1.18m. Velocity x Depth product of 0.21m²/s

Front of Mound (bottom) 20 Year Flood Velocity, 0.26m/s, Average Overland Flood Depth 0.58m Velocity x Depth product of 0.15m²/s.

Carpark

20 Year Flood Velocity, 0.26 m/s, Average Overland Flood Depth 0.43 m. Velocity x Depth product of 0.11 m²/s

All Velocity x Depth products are below 0.4 m²/s at bottom of the mound making it a low hazard situation for adults for the 20 year flood, however the flood level would present a danger to children and the elderly. The carpark presents a low hazard in the 20 year flood event. (See Figure 4).

<u>100 Year</u>

Rear of Mound (bottom) 100 Year Flood Velocity, 0.18m/s, Average Overland Flood Depth 1.51m. Velocity x Depth product of 0.27m²/s

Front of Mound (bottom) 100 Year Flood Velocity, 0.26m/s, Average Overland Flood Depth 0.91m Velocity x Depth product of 0.24m²/s.

Top of the mound 100 Year Flood Velocity, 0.26m/s, Average Overland Flood Depth 0.26m Velocity x Depth product of 0.07m²/s.

Carpark

100 Year Flood Velocity, 0.26m/s, Average Overland Flood Depth 0.76m. Velocity x Depth product of $0.2m^2\!/s$

All Velocity x Depth products are below 0.4 m²/s at bottom of the mound making it a low hazard situation at the front of the mound for adults and extreme hazard for adults at the rear of the mound for the 100 year flood, the flood level would present a danger to children and the elderly. The carpark presents a low hazard for adults and extreme for children and the elderly in the 100 year flood event (See Figure 4).

Safety Criteria for People in Variable Flow Conditions The Australian Rainfall and Runoff: A guide to flood estimation (ARR), Book 6 - Flood Hydraulics Figure 6.7.4. Safety Criteria for People in Variable Flow Conditions Cox et al. (2010)

Figure 5 Criteria for Vehicles in Variable Flow Conditions The Australian Rainfall and Runoff: A guide to flood estimation (ARR), Book 6 - Flood Hydraulics Figure 6.7.6. Interim Safety Criteria for Vehicles in Variable Flow Conditions (Shand et al., 2011)

With the pad level at a minimum of RL.2.25m this puts the flood depth at 0.26m in a 100 year flood. Filling to these levels will reduce the risk and allow the top of the mound/pad to be compatible with the flood hazard of the land in the 20 year flood event and low hazard in the 100 year event.

(b) is not likely to significantly adversely affect flood behaviour resulting in detrimental increases in the potential flood affectation of other development or properties.

Due to the immense size of the floodplain the filling of the site will have no noticeable effect on flood levels, even if we just considered the size of Lot 11 (41.53ha) there would only be a rise of 1.7mm, when the whole floodplain size is taken into account this measurement would be insignificant. It is expected that the fill material will be sourced within the same floodplain, therefore there will be no net loss in volume storage. The fill shall be certified VENM.

The existing open drains shall remain as is.

Due to no net loss in volume storage, maintaining of the existing boundary drains and relatively low 100 year flood velocities the proposed development is not likely to have any significantly adverse affect or potential flood affectation of other development or properties.

(c) incorporates appropriate measures to manage risk to life from flood.

Evacuation

The sites position does present difficulties as the front and rear of the property is impacted by the 20 and 100 year flood overland flow paths, however the site will only be used as a commercial property and therefore will only be inhabitable during normal working hours. Workers are unlikely to be at the premises if a flood event is forecast. The 20 and 100 year flow depth at the road is expected to be approximately 0.58m and 0.91m deep respectively, which is considered unsafe for vehicles, (see Figure 5), however adequate flood warning is available to allow safe and orderly evacuation prior to flooding without increased reliance upon the SES or other authorised emergency services personnel.

Flood Risk Management Plan

For any building where personnel may be located it is recommended that a Flood Risk Management Plan be implemented.

- 1. At the first signs that there may be a rainfall event, check reliable weather reports (eg Bureau of Meteorology) for any possible forecast warnings issued. If any storm warnings have been forecast, a Flood Risk Management Plan must be actioned.
- 2. During flood events many local streets and roads may be cut off by floodwaters that may make the escape by vehicle extremely difficult. Travelling through floodwaters on foot should be avoided at all times. Travelling by vehicles through floodwaters is dangerous as obstructions can be hidden under the floodwaters.
- 3. It is recommended that during any flood event, staying within the building as much as practical is always the safest option and do no evacuate the building unless instructed by the State Emergency Services (SES) or police.
- 4. Develop your own 'Flood Plan' generally in accordance with this Flood Risk management Plan.

- 5. If flood levels appear to approach the building:
- Move important documents, personal items, photographs and vital medical supplies to a safe and easily accessible place with a pre-prepared 'Emergency Flood Kit'
- Gather medicines, mobile phones, first aid kit, special papers, battery operated torch and radio, fresh water, canned food, water proof or easy dry clothing all packed in one location
- Put on strong shoes, raise any items within the home that may be damaged by water to as high a level as possible, with electrical items on top. Turn off any large electrical items at the power point such as a TV that cannot be raised.
- 6. In the event that flood waters appear that they may enter the building:
- Turn off electricity at the switchboard
- Turn off gas and water at the meter
- Block toilet bowls with a strong plastic bag filled with earth or sand
- Cover drains in showers, baths, and laundry with a string plastic bag filled with earth or sand.

7. In the case of a medical or life-threatening emergency ring 000 as normal.

8. A laminated copy of the Flood Risk Management Plan should be permanently attached to an inside cupboard door in the main area and to the inside of the electrical meter box

(d) is not likely to significantly adversely affect the environment or cause avoidable erosion, siltation, destruction of riparian vegetation or a reduction in the stability of river banks or watercourses.

During the filling of the site, sediment & erosion control devices shall be put in place, i.e. silt fences, until sufficient vegetation coverage is obtained. No works will be occurring near a riparian area or the river bank to cause any significant adverse affect.

(e) is not likely to result in unsustainable social and economic costs to the community as a consequence of flooding.

As stated previously due to no net loss in volume storage there will be no significant change in flood levels and therefore no unsustainable social and economic costs to the community as a consequence.

7. Conclusion

This Flood Impact Assessment Report has been undertaken by Structerre Consulting Engineers based on information provided by Clarence Valley Council and available survey & design plans by A. Fletcher & Associates Pty Ltd.

It should be noted that the lower river will generally have a 2-3 day warning for any flood event and flash flooding of the premises is unlikely.

Due to no net loss in volume storage, maintaining of the existing boundary drains and relatively low flood velocities the proposed development is not likely to have any significantly adverse affect or potential flood affectation of other development or properties.

To ensure compliance with Council's flood prone land policy, the following is recommended:

- A Flood Risk Management Plan should be implemented by the owner.
- Minimum mound/pad level shall be above the 20 year flood level.
- The site will only be used as a commercial property and therefore will only be inhabitable during normal working hours. Workers are unlikely to be at the premises if a flood event is forecast.
- All construction below RL.3.11m (500mm above the 100 year event) shall be flood compatible building components.

Given the nature of the development and the proposal, the risks associated with building within a flood zone have been reduced significantly by having the mound/ pad above the 1:20 year flood level and accordingly I submit to Council that this Flood Impact Assessment Report be accepted in support of the Development Application.

ANNEXURE L

DPI ADVICE

Attachment 2

Department of Primary Industries

OUT21/5571

Terry Dwyer Strategic Planning Coordinator Clarence Valley Council Locked Bag 23 GRAFTON NSW 2460

Terry.Dwyer@clarence.nsw.gov.au

Dear Terry

Planning Proposal - Lot 11 DP 1259162, 4 River Road, Palmers Island (REZ2021/0003) Thank you for the opportunity to comment on the above planning proposal as per your email dated 14 April 2021. The NSW Department of Primary Industries (NSW DPI) Agriculture provides advice to consent authorities about the protection and growth of agricultural industries and the resources upon which these industries depend to provide economic growth.

NSW DPI Agriculture understands that the proposal is for Pridel Pty Ltd, owners of Lot 11 DP 1259162 (No.4) River Street Palmers Island, to rezone a 4,500m² portion of the property from RU1 Primary Production to RU2 Rural Landscape to enable 'rural supplies' to be permissible with consent on the subject land. A farm shed and flood mound have previously been approved on the property and the intention of the rezoning is to allow a further development application to be submitted for an additional shed to be occupied by a rural supplies business.

As identified within the proposal, the subject land is mapped as important farmland within the North Coast Regional Plan. NSW DPI Agriculture does not support the rezoning of the subject land from RU1 to RU2 as this may allow other types of development not associated with agriculture to exist in the future.

It is recognised that 'rural supplies' is an agricultural related land use and as such we would support the alternative proposal to amend the LEP Schedule 1 Additional Permitted Uses to include "rural supplies" as an additional use permitted with consent on part of Lot 11 DP 1259162. This is subject to due consideration of any potential land use conflict risks between the proposed development and the surrounding agricultural activities.

Should you wish to discuss this matter further please contact our Agricultural Land Use Planning Officer, Selina Stillman, on 0412 424397.

Yours sincerely

TRevice. 6/5/21

Tamara Prentice Manager Agricultural Land Use Planning

NSW Department of Primary Industries - Agriculture Locked Bag 21, Orange NSW 2800 | 161 Kite St, Orange NSW 2800 Tel: 02 6391 3369 | Email: landuse.ag@dpl.nsw.gov.au | www.dpl.nsw.gov.au | ABN: 19 948 325 463

ANNEXURE M

TRANSPORT FOR NSW RESPONSE

5 March 2021

TfNSW Ref: NTH21/00098/01 Your Ref: REZ2021/0003

The General Manager Clarence Valley Council Locked Bag 23 GRAFTON NSW 2460

Attention: Terry Dwyer

Dear Sir,

RE: Planning Proposal – Rezoning from RU1 to RU2. Lot 11 DP 1259162, River Road, Palmers Island (REZ2021/0003)

I refer to your letter dated 14 April 2021 requesting comment from Transport for NSW (TfNSW) in relation to the abovementioned Planning Proposal.

Roles and Responsibilities

The key interests of TfNSW are the safety and efficiency of the transport network, the needs of our customers and the integration of land use and transport in accordance with Future Transport Strategy 2056.

Yamba Road is a classified (Regional) road (MR 152). Clarence Valley Council is the Roads Authority for all public roads (other than freeways or Crown roads) in the local government area pursuant to Section 7 of the *Roads Act 1993*. TfNSW is the roads authority for freeways and can exercise roads authority functions for classified roads in accordance with the Roads Act.

Council is responsible for setting standards, determining priorities and carrying out works on Local and Regional roads. However TfNSW concurrence is required prior to Council's approval of works on classified (Regional) roads under Section 138 of the *Roads Act 1993.*

In accordance with Clause 101 of the *State Environmental Planning Policy (Infrastructure)* 2007 (ISEPP) the Consent Authority is to have consideration for the safety, efficiency and ongoing operation of the classified road as the development has frontage to a classified road. TfNSW is given the opportunity under Clause 104 to comment on traffic generating developments listed under Schedule 3.

It is emphasised that the following comments are based on the information provided to TfNSW at this time. They are not to be interpreted as binding upon TfNSW and further comment may be provided following formal review of any development application referred by the appropriate Consent Authority.

Transport for NSW 76 Victoria Street, Grafton, NSW 2460 | PO Box 576, Grafton NSW 2460 W transport.nsw.gov.au

Transport for NSW Response

TfNSW understands that the application is part of a preliminary review of a privately lodged Planning Proposal, intended to make 'rural supplies' permissible under the CVC LEP. We have reviewed the information provided and make the following comments to assist Council in assessment of the proposal.

- 1. We note that your letter advises that if a use such as 'rural supplies' were to be approved through the development consent process, access would be to and from Yamba Road which is a major traffic link in the regional road network. Access for any new development onto Yamba Road must not compromise the functionality of the road or the safety of road-users.
- 2. Approval of access would be through section 138 of the Roads Act and the concurrence of TfNSW will be required. Council and the proponent should be aware at this stage in the planning process that, as the location proposed is in a high-speed environment, significant roadworks may be required to provide a safe and efficient access to any future development. Any new intersection works will need to be designed to the current speed limit.
- 3. TfNSW recognises that the change in zoning is a matter for Council to decide, particularly the removal of land from the RU1 Zone and the suitability of introducing new permissible uses through the RU2 landuse table. However, there are a number of those additional uses that may place inappropriate pressure on the regional road network, and Council will need to be satisfied that the safety and efficiency of the network can be maintained.
- 4. In respect to considering a Schedule 1 amendment for rural supplies on the subject land, the comments above relating to access are relevant and need not be repeated.

In summary, it is requested that Council give strong consideration to the impact of allowing commercial uses to establish in this rural location, and the transport infrastructure needed to support such uses.

Any roadwork on classified road/s is to be designed and constructed in accordance with the current Austroads Guidelines, Australian Standards and TfNSW Supplements.

TfNSW highlights that in determining the application under the Environmental Planning and Assessment Act 1979, it is the Consent Authority's responsibility to consider the environmental impacts of any roadworks which are ancillary to the development. This includes any works which form part of the proposal and/or any works which are deemed necessary to include as requirements in the conditions of project approval.

If you have any further enquiries regarding the above comments please do not hesitate to contact Cheryl Sisson, Development Services Case Officer or the undersigned on (02) 6640 1362 or via email at: development.northern@transport.nsw.gov.au

Yours faithfully,

land

for Matt Adams Team Leader, Development Services Community and Place | Region North Regional & Outer Metropolitan Transport for NSW

Transport for NSW 76 Victoria Street, Grafton, NSW 2460 | PO Box 576, Grafton NSW 2460 W transport.nsw.gov.au

ANNEXURE N

CLAUSE 5.21 ASSESSMENT

CV LEP 2011 CLAUSE 5.21 ASSESSMENT

- (2) Development consent must not be granted to development on land the consent authority considers to be within the flood planning area unless the consent authority is satisfied the development: -
- *a)* is compatible with the flood function and behaviour on the land, and

Comment: The flood mound will increase by approximately $600m^2$ to a finished level of 2.25m AHD for the shed area and 1.75m AHD for the car park. The Flood Impact Assessment (FIA) states that the shed level will have 0.26m of water over it in a 100 year event with low velocities and so is low hazard.

b) will not adversely affect flood behaviour in a way that results in detrimental increases in the potential flood affectation of other development or properties, and

Comment: The FIA states that filling will have no noticeable effect on flood levels due to the immense size of the floodplain.

c) will not adversely affect the safe occupation and efficient evacuation of people or exceed the capacity of existing evacuation routes for the surrounding area in the event of a flood, and

Comment: The shed is non-habitable and will not be occupied as floods approach.

d) incorporates appropriate measures to manage risk to life in the event of a flood, and

Comment: No risk to life as business will not operate during floods.

e) will not adversely affect the environment or cause avoidable erosion, siltation, destruction of riparian vegetation or a reduction in the stability of river banks or watercourses.

Comment: No impact.

- (3) In deciding whether to grant development consent on land to which this clause applies, the consent authority must consider the following matters:
 - a) the impact of the development on projected changes to flood behaviour as a result of climate change,

Comment: Climate change is incorporated into the model.

b) the intended design and scale of buildings resulting from the development,

Comment: The building will be constructed of flood compatible material below the 100 year plus 500mm freeboard level.

c) whether the development incorporates measures to minimise the risk to life and ensure the safe evacuation of people in the event of a flood,.

Comment: No evacuation required.

d) the potential to modify, relocate or remove buildings resulting from development if the surrounding area is impacted by flooding or coastal erosion.

Comment: Shed can be dismantled but this will not be required as it will be flood resistant.

ANNEXURE O

TRAFFIC IMPACT ASSESSMENT (BITZIOS, MARCH 2022)

Rural Supplies Lot 11 Yamba Road

Traffic Impact Assessment

29 March 2022

Gold Coast

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377 Brisbane

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442 Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

W: www.bitziosconsulting.com.au

E: admin@bitziosconsulting.com.au

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

Document Issue History

Report File Name	Prepared	Reviewed	Issued	Date	Issued to
P5547.001R Rural Supplies Lot 11 Yamba Road TIA	R. Tuputala	L. Darragh	L. Darragh	28/03/2022	Andrew Fletcher afletcher@surveyorsnorthcoast.com.au
P5547.002R Rural Supplies Lot 11 Yamba Road TIA	R. Tuputala	L. Darragh	L. Darragh	29/03/2022	Andrew Fletcher afletcher@surveyorsnorthcoast.com.au

CONTENTS

		Page
1.	INTRODUCTION	1
1.1	Background	1
1.2	Proposed Development	1
1.3	Scope	2
2.	EXISTING CONDITIONS	3
2.1	Existing Site	3
2.2	Surrounding Road Network	4
2.3	Alternative Transport	4
2.4	Background Traffic Volumes	4
3.	TRAFFIC ASSESSMENT	5
3.1	Overview	5
3.2	Development Traffic Generation	5
3.3	Development Traffic Distribution	5
3.4	Traffic Impact	6
4.	PARKING ASSESSMENT	7
4.1	Car Parking	7
4.2	Parking Geometric Layout Assessment	8
5.	ACCESS ASSESSMENT	9
5.1	Vehicular Access	9
5.2	Driveway Access Analysis	9
5.2.1	Overview	9
5.2.2	Access Turn Warrants	9
5.2.3	Proposed Access Treatments	10
5.3	Sight Distance	11
6.	SERVICING ASSESSMENT	12
6.1	Servicing	12
6.2	Refuse Collection	12
7.	SUMMARY AND CONCLUSIONS	13

Tables

- Table 2.1: Surrounding Road Network
- Table 3.1:
 Development Traffic Generation
- Table 3.2: Development Traffic Directionality
- Table 4.1: Car Parking Requirements and Provision
- Table 4.2: First Principles Car Parking Requirements and Provision
- Table 4.3: Parking Geometric Layout Assessment
- Table 5.1: Traffic Volumes for Assessment
- Table 5.2: Dimensions for AUL(S) Treatment
- Table 5.3: Access Sight Distance Review

Figures

- Figure 1.1: Site Location
- Figure 2.1: Land Use Zoning and Site Location
- Figure 2.2: Indicative Boundary for Subject Site Rezoning
- Figure 5.1: Proposed Access
- Figure 5.2: Turn Warrants Assessment Development Access / Yamba Road
- Figure 5.3: Rural Auxiliary Left-Turn Lane Treatment (AUL)

Appendices

- Appendix A: Development Plans
- Appendix B: Traffic Survey Data
- Appendix C: Site Access AUL Concept Plan

1. INTRODUCTION

1.1 Background

Bitzios Consulting has been engaged by *Pridel Pty Ltd* (client) to prepare a Traffic Impact Assessment (TIA) for a proposed rural supplies shed located on-site at 4 River Road, Palmers Island (formally described as Lot 11 on DP1259162). The location of the subject site is illustrated in Figure 1.1.

SOURCE: Nearmap

Figure 1.1: Site Location

1.2 Proposed Development

The proposal is to rezone a component of land in Lot 11 on DP1259162 from RU1 (Primary Industry) to RU2 (Rural Landscape). The development is to include a rural supplies shed comprised of:

- Development area: 4,500m²
- Supplies shed: 720m²
- Six (6) car parking spaces provided on-site
- Access maintained via existing Yamba Road frontage.

The rural supplies component will operate out of the southern shed, while the existing northern shed is used for farming purposes associated with the macadamia tree farm. Additional information for site operations of the proposed rural supplies component are as follows:

- Working hours:
 - Weekdays: 8am 5pm
 - Saturdays: 8am 12pm
- A total of 2 staff on-site during work hours
- Largest vehicle on-site will be a heavy rigid vehicle (HRV)
 - Maximum of 2 HRV's will arrive each day
 - HRV's will arrive and depart to/from the south.

A copy of the proposal plans has been provided at Appendix A

1.3 Scope

The scope for this assessment included:

- A review of the key surrounding road networks
- A review of surrounding development applications (DA) and key aspects of future transport planning in and around the urban release area
- Estimation of the development's traffic generation and distribution onto the external road network
- Assessment of the car parking provisions against the requirements of Council's *Development* Control Plans (DCP) (2011) and Australian Standards (AS2890)
- Assessment of the parking geometric layout against the relevant requirements of AS2890
- Assessment of the proposed access location and form with consideration to Council's requirements and AS2890
- A review of the development facilities for servicing and refuse collection.

2. EXISTING CONDITIONS

2.1 Existing Site

The existing site is essentially vacant land with its only frontage to Yamba Road. It is currently zoned RU1 (Primary Production) and surrounded predominantly by other RU1 zoned land, while abutting RU2 (Rural Landscape) land to its north-west.

The land use zoning is shown in Figure 2.1 extracted from Council's Interactive Mapping. This also shows the overall site boundary (Lot 11 on DP1259162) and indicative boundary of the component of land proposed to be rezoned to RU2.

SOURCE: Clarence Valley Council Interactive Mapping

Figure 2.1: Land Use Zoning and Site Location

The indicative boundary for the component of the site to be rezoned to RU2 is shown in Figure 2.2.

SOURCE: Nearmap

Figure 2.2: Indicative Boundary for Subject Site Rezoning

The site plan is provided in **Appendix A**.

2.2 Surrounding Road Network

Details of the road network surrounding the subject site is shown in Table 2.1.

Road Name	Jurisdiction	No. of Lanes	Hierarchy	Divided	Speed Zone
Yamba Road	Council	2	Sub-Arterial	No	60km/h to 100km/h
Yamba Street	Council	2	Local Access	No	60km/h
River Road	Council	2	Local Access	No	50km/h

 Table 2.1:
 Surrounding Road Network

The site is located with its only frontage to Yamba Road for gaining access. It is located adjacent to a change in speed zone (60km/h to 100km/h) and within proximity of the Palmers Island Public School zone.

Adjacent the site, Yamba Road is flat and straight with significant sight distance available in both directions. It is noted there are no existing intersections or key decision point in the vicinity of the subject site.

2.3 Alternative Transport

There is currently limited alternative transport infrastructure and/or services considering the surrounding road environment, surrounding rural land uses and large sized lots.

As such, the proposed development does not trigger the need for any updated or new alternative transport infrastructure or services.

2.4 Background Traffic Volumes

Traffic volume data was collected via automatic (tube) counts collected over a 7-day period from 2 February 2022 to 8 February 2022 by Traffic Data & Control (TDC).

Key findings from the data showed:

- Average Daily Traffic Volumes (weekday):
 - Northbound : 9,777 veh/day (50% split)
 - Southbound : 9,703 veh/day (50% split)
 - Combined (two-way) : 19,480 veh/day
- Average Daily Traffic Volumes (weekend):
 - Northbound : 7,032 veh/day (49% split)
 - Southbound : 7,310 veh/day (51% split)
 - Combined (two-way) : 14,342 veh/day
- 85th Percentile Speeds:
 - Northbound : 79km/h
 - Southbound : 81km/h

A copy of the traffic data is attached at Appendix B.

3. TRAFFIC ASSESSMENT

3.1 Overview

The purpose of this assessment is to determine the quantum of traffic generated by the proposed use in the context of the background traffic volumes, to ascertain whether any impacts are generated resulting from the proposed development on the external road network.

A combination of industry standard trip generation rates and 'first principles' trip generation was adopted for the assessment given the nature and scale of the use. The existing background traffic volumes were utilised as detailed in Section 2.4 and provided in **Appendix B**.

3.2 Development Traffic Generation

The traffic generation has been based on a 'first principles' approach using proposed development details and adopting an industry standard rate for the proposed rural supplies shed component.

Traffic generation rates were reviewed from the TfNSW (formerly RMS) *Guide to Traffic Generating Developments* (GTGD2002). Given the development is a rural supplies shed and no specific rates exist for the land use within the GTGD2002, traffic generation rates for a warehouse land use were adopted.

The estimated traffic generation is shown in Table 3.1.

Land Use	Quantity	Peak Rate	Peak Trips (veh/h)
Rural Supplies Shed (Warehouse)	720m ²	0.5 trips per 100m ² GFA	4
Staff	2	1 per staff in each peak	2
Heavy Vehicles	2	1 per vehicle in each peak	2
		TOTAL	8

Table 3.1: Development Traffic Generation

The expected development directionality is determined as shown in Table 3.2 and considering development specific information regarding staff and heavy vehicle trips and directionality.

Land Use	AM Trip Split		PM Trip Split		AM Trips (veh/h)		PM Trips (veh/h)	
Land Use	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Rural Supplies Shed	50%	50%	50%	50%	2	2	2	2
Staff	100%	-	-	100%	2	-	-	2
Heavy Vehicles	50%	50%	50%	50%	1	1	1	1
				TOTAL	5	3	3	5

 Table 3.2:
 Development Traffic Directionality

3.3 Development Traffic Distribution

Due to the rural nature of the site and location of large, primary production (RU1) and rural/agricultural land to the south and west, the majority of development trips were distributed to the south. This is consistent with advice from the applicant. As such, 90% of development trips were distributed to/from the south with the remaining 10% to/from the north.

3.4 Traffic Impact

The volume of traffic generated by the development was calculated at a total of 8 veh/h (two-way) in the peak periods. This level of traffic generation is considered low and deemed to result in negligible impacts to the external road network given the distributions and directionality identified above.

For context, this quantum of traffic is equivalent to approximately 1 vehicle trip every 7.5 minutes to/from the site (assuming uniform traffic flow).

Given this level of traffic and nature of the use and surrounding land, no further external traffic assessment is considered warranted and any impacts considered negligible.

4. PARKING ASSESSMENT

4.1 Car Parking

The car parking requirements for the development were sourced from Council's DCP with car parking rates, requirements and proposed provisions outlined in Table 4.1.

Land Use	Туре	Quantity	Parking Rate	Parking Required	Provision	
Rural Supplies	Visitor	4,500m ²	1 per 200m ² of site area	23 spaces	6 00000	
Rural Supplies	Staff	2	1 per staff	2 spaces	6 spaces	
			Total	25 spaces	6 spaces	

 Table 4.1:
 Car Parking Requirements and Provision

Whilst the car parking provisions do not comply with Council's standards, practicalities of the development need to be considered as the true operations of the rural supplies shed will not represent a common rural supplies business, as outlined in the traffic generation calculations. Business operations are outlined in Section 1.2 for which the following assumptions have been made:

- All staff travel to work via personal vehicles
- Visitors arrive by car only
- Northern shed (used for macadamia farm storage) is a non-trip generating storage area for the commercial operations of the rural supplies business
- All operations for the proposed use will be contained within the southern shed (720m²).

As shown above, the DCP rate uses the entire site area which is 4,500m², however the proposed use will operate out of the southern shed only which is 720m² and hence it is not considered practical to use the entire site area for calculating parking. This is consistent with the approach for traffic generation and given the site will generate in the order of 8 veh/h in a peak hour (inclusive of staff).

Considering the operations of the site, a first principles approach to car parking provision is also considered appropriate.

First principles car parking calculations are outlined in Table 4.2.

Land Use	Туре	Quantity	Parking Rate	Parking Required	Provision	
Durol Supplies	Visitor	720m ²	1 per 200m ² of site area	4 spaces	6 000000	
Rural Supplies	Staff	2	1 per staff	2 spaces	6 spaces	
			Total	6 spaces	6 spaces	

Adopting a first principles approach aligns the car parking needs with the operations of the business. As such, the proposed car parking supply is considered to meet the car parking demand.

4.2 Parking Geometric Layout Assessment

The on-site parking geometric layout has been assessed against the relevant requirements of AS2890 as outlined in Table 4.3.

Design Element	Requirement	Provided				
Visitor Car Parking Bays	2.5m x 5.4m	2.5m x 5.5m				

 Table 4.3:
 Parking Geometric Layout Assessment

Visitor Car Parking Bays	2.5m x 5.4m	2.5m x 5.5m	Yes
Staff Car Parking Bays	2.4m x 5.4m	2.5m x 5.5m	Yes
Parking Aisle Width	5.8m (+0.3m for single sided aisle)	5.8m (min.) (+0.3m for single sided aisle)	Yes
Clearance to Vertical Obstructions	0.3m	0.3m (min.)	Yes
Blind Aisle Extension	1m	1m (min.)	Yes

As demonstrated in Table 4.3, the on-site parking geometric layout complies (or shall comply) with the relevant requirements of AS2890.

Compliant

5. ACCESS ASSESSMENT

5.1 Vehicular Access

A two-way all movements vehicular access is proposed on the Yamba Road frontage as illustrated in Figure 5.1. This is the site's only frontage and hence only location for access to be achieved.

SOURCE: Nearmap

Figure 5.1: Proposed Access

The location of the access avoids existing infrastructure (e.g. culvert(s)) and allows for clear sight lines and visibility to the frontage road considering the straight, flat nature of Yamba Road in this location.

5.2 Driveway Access Analysis

5.2.1 Overview

The site access is via an all-movements crossover to be located on Yamba Road. The access is to be in the form of an auxiliary left-turn lane (AUL) into the site considering the predominant distribution of traffic to/from the south, and the existing road environment and speeds.

The access has been assessed applying the Austroads *Guide to Road Design: Part 4a* (AGRD4a) and *Guide to Traffic Management: Part 6* (2020) (AGTM6). Specifically, a turn warrant assessment has been undertaken using Figure 3.25 from the AGTM6 to determine the appropriateness of the auxiliary left-turn lane.

5.2.2 Access Turn Warrants

A turn warrants assessment was undertaken for the proposed driveway access in accordance with the requirements of AGTM6. The AM and PM peak hourly volumes were adopted from the traffic survey data found at **Appendix B** and the trip generation calculated in Section 3.

The assessment adopts the turn warrants chart for a major road with the design speed of 'less than 100km/h' as the posted limit for Yamba Road is 100km/h and the 85th percentile speed is ~80km/h (refer Section 2.4 and **Appendix B**).

Trip generation values from Table 3.2 and operational data received from the client have been used for the design traffic volumes shown in Table 5.1.

A	Movement	Major Road Vol	ume Q _m (veh/h)	Turning Volume Q⊤ (veh/h)		
Access Movement		АМ	РМ	АМ	РМ	
Vershe Deed	Left Turn	853	810	5	3	
Yamba Road	Right Turn	1,731	1,652	1	1	

Table 5.1: Traffic Volumes for Assessment

NOTE: The turning volume was adopted from Table 3.2 and has included rounding for a conservative assessment.

The resulting turn warrants assessment is shown in Figure 5.2.

Figure 5.2: Turn Warrants Assessment – Development Access / Yamba Road

As shown in Figure 5.2, the left turn in movement is sitting on the threshold between a Basic left turn (BAL) treatment and the higher order short Auxiliary left turn (AUL(S)) treatment. Although the use of a BAL could be justified, it is important to factor in the rural site location, the through traffic volumes and vehicle types and speed environment.

Therefore, it is considered appropriate and beneficial for the site to provide the higher order AUL treatment for ease of vehicle manoeuvring and achieving a safer outcome for through traffic (i.e. turning traffic can decelerate away from through traffic).

5.2.3 Proposed Access Treatments

The design of the AUL treatment was based on AGRD4a and adopting the average 85th percentile speed of 80km/h from the traffic survey data and a rate of deceleration of 3.5m/s², and increased provisions for taper length overall.

Figure 5.3 illustrates the geometry requirements for an AUL in accordance with AGRD4a.

SOURCE: Austroads Guide to Road Design Part 4a

Figure 5.3: Rural Auxiliary Left-Turn Lane Treatment (AUL)

Dimensions for the AUL treatment are shown in Table 5.2. The deceleration length "D" was adopted from Table 5.2 of AGRD4a with a 30m taper adopted considering the change in speed environment.

Table 5.2: Dimensions for AUL(S) Treatment

Design Speed	Turning Lane Width (W⊤)	Diverge / Deceleration Length (D)	Taper Length (T)
80km/h	3m	70m	30m

Based on the traffic volumes and nature of the rural supplies shed (and that left turns are unopposed), detailed SIDRA analysis is not considered warranted. See **Appendix C** for the AUL concept plan.

5.3 Sight Distance

A sight distance assessment of the development's vehicular access was undertaken in accordance with the relevant requirements of AS2890 as outlined in Table 5.3.

 Table 5.3:
 Access Sight Distance Review

A	Direction	85 th Percentile	Sight I	Distance	Compliant	
Access	Direction	Speed	Available	Required	Compliant	
Vershe Deed	Northbound	79km/h	210m	110m	Yes	
Yamba Road	Southbound	81km/h	250m	113m	Yes	

As demonstrated in Table 5.3 the proposed vehicular access exceeds the minimum sight distance provision and is considered appropriate.

6. SERVICING ASSESSMENT

6.1 Servicing

Servicing will take on-site with no dedicated loading / servicing bay. Servicing will occur within the shed or within the car park (entirely within the site). Service vehicles will all enter and exit the site in a forward gear.

Given the site area and nature of use, this is considered appropriate.

6.2 Refuse Collection

Refuse collection is to occur on-site, consistent with the servicing conditions outlined above and remain entirely within the site. A dedicated collection location will be nominated for collection days and all refuse vehicles will enter and exit the site in a forward gear. This is not expected to result in any adverse traffic conditions.

The above arrangements are consistent for developments of this nature and occur on-site, entirely clear from external traffic. As such, the servicing and refuse arrangements are considered appropriate.

7. SUMMARY AND CONCLUSIONS

A summary of the key findings of the TIA for the proposed rural supplies shed development off Yamba Road were as follows:

- The proposal is for a 720m² rural supplies shed on a development area of 4,500m²
- The proposed development is estimated to generate in the order of 8 additional vehicles trips in both the AM and PM peak periods, equating to approximately 1 vehicle trip every 7.5 minutes
- The access is proposed to be delivered in a higher order treatment than is warranted including the provision of an auxiliary left-turn lane (AUL) into the site complying with the requirements of Austroads Guide to Road Design Part 4a
- A total of 6 car parking spaces have been proposed as part of the development which is considered suitable to meet the demands of the site based on a first principles approach for the site considering nature and scale of use, and the estimated trip generation
- The parking geometric layout generally complies with the relevant requirements of AS2890 based on the plans provided
- A single, two-way all movements crossover has been proposed with AS2890 and Northern Rivers Local Government Standard Drawing R-16
- The sight distance for the proposed crossover exceeds the minimum required sight distance requirements of AS2890 for an access given the straight, flat nature of Yamba Road
- Servicing and refuse collection are proposed to occur entirely within the site boundaries without the need for dedicated loading / servicing bays, yet allowing all vehicles to enter/exit the site in a forward gear.

Based on the above assessment, it is concluded that there are no significant traffic or transport impacts associated with the proposed development to preclude its approval and relevant conditioning on transport planning grounds.

Appendix A: Development Plans

Appendix B: Traffic Survey Data

Yamba Rd, Palmers Island

Traffic Data & Control

2/02/2022

0000 0015 0030 0045 0100 0115 0130 0145 0200 0215 0230	4 4 0 4 2	4 4 0	0	0	85.1 95.3	-	0000 0015
0030 0045 0100 0115 0130 0145 0200 0215	0 4		0				
0045 0100 0115 0130 0145 0200 0215	4		0	0	95.5		0015
0115 0130 0145 0200 0215	2	2	2	0	79.6	-	0045
0130 0145 0200 0215		2	0	0	118.3	-	0100
0145 0200 0215	0	0	0	0	-	-	0115
0200 0215	0	0	0	0	-		0130
	2	2	0	0	87.9		0200
0000	2	2	0	0	83.6	-	0215
	3	3	0	0	85.6	-	0230
0245 0300	9	5	4 4	0	80.6 79.7		0245 0300
0315	5	5	0	0	66		0315
0330	3	3	0	0	69.7	-	0330
0345 0400	2 3	2	0	0	91.9 89.5		0345 0400
0400	1	1	0	0	76.8		0400
0430	15	12	3	0	73.1	89.6	0430
0445	16	13	3	0	81	92.1	0445
0500	6	5 34	1 3	0	84.8 78.5	-	0500
0515 0530	37 97	77	20	0	70.5	88.7 80.5	0515
0545	82	67	11	4	74.6	81.9	0545
0600	47	43	4	0	77	84.7	0600
0615	103	96 126	5	2	73.4	82.6	0615
0630 0645	145 191	126	18 30	<u>1</u> 0	73.6 73.6	82.1 80.6	0630 0645
0700	127	105	21	1	70.9	79.7	0700
0715	190	146	27	17	71.3	79.3	0715
0730	172	148	15	9	69.7	77.6	0730
0745 0800	195 206	179 177	11 27	5	69.5 67.5	77.2 75	0745 0800
0815	206	229	21	2	66.3	74.2	0800
0830	297	251	37	9	63.6	72.5	0830
0845	305	270	28	7	64	72	0845
0900 0915	264 168	221 151	38 16	5	64 64.9	72 73.6	0900
0930	221	189	28	4	67.3	74.6	0930
0945	182	155	19	8	67.8	75.6	0945
1000	171	147	14	10	69.1	75.7	1000
1015	190	173	15 20	2	68.6	76.2	1015
1030 1045	183 185	163 158	20	0 7	69.7 67	78.1 75.7	<u> </u>
1100	172	138	18	16	69	76.7	1100
1115	205	176	24	5	66.9	75.8	1115
1130	210	186	16	8	69.9	76.5	1130
1145 1200	181 185	155 165	<u>19</u> 16	7 4	69 68	77.7 76.3	<u>1145</u> 1200
1215	177	150	21	6	67.2	76.1	1215
1230	158	142	13	3	67.3	75.2	1230
1245	169	148	16	5	69.2	77.4	1245
1300 1315	195 186	163 167	25 12	7	69.5 68.9	77.7 78.3	<u>1300</u> 1315
1330	201	177	18	6	69.5	77.9	1330
1345	172	154	14	4	67.5	76.7	1345
1400	149	128	17	4	67.8	75.7	1400
1415 1430	176 211	155 182	17 19	<u>4</u> 10	68 66.1	75.8 75	<u>1415</u> 1430
1445	190	179	7	4	68.4	77.1	1445
1500	215	196	18	1	64.4	70.3	1500
1515	228	201	26	1	68	75.4	1515
1530 1545	277 228	250 215	22 10	5	67.5 65.8	74.7 72.6	<u>1530</u> 1545
1600	228	249	35	4	69.4	76.1	1600
1615	222	199	21	2	70.2	77.9	1615
1630	235	207	28	0	68.8	75.7	1630
1645 1700	<u>198</u> 231	<u>177</u> 212	16 17	5	69.5 72.7	<u>77.1</u> 81.8	<u>1645</u> 1700
1715	188	173	17	0	72.2	80.5	1700
1730	144	136	8	0	73.4	82.2	1730
1745	157	148	7	2	70.6	79	1745
1800 1815	120 79	109 67	11 12	0	74.8	83.7 82.8	<u>1800</u> 1815
1830	74	71	3	0	74.9	85.8	1830
1845	42	37	5	0	71.7	77	1845
1900	38	31	5	2	73.1	80.8	1900
1915 1930	40 35	36 34	4	0	73.2 69.6	81.2 82.1	<u> </u>
1930	38	34	4	0	70.9	80.9	1930
2000	27	24	2	1	65.8	73	2000
2015	21	14	5	2	74	86.3	2015
2030	22	19	2	1	69.8	77.9	2030
2045 2100	30 28	26 28	4 0	0	69.1 70.1	77.9 78.5	2045 2100
2100	28	28	4	0	76.3	87.8	2100
2130	16	16	0	0	78.8	90	2130
2145	23	23	0	0	77.4	89.4	2145
2200 2215	<u>11</u> 6	<u>11</u> 6	0	0	73.5 75.9	94.2	2200 2215
2215	7	6	1	0	75.9		2215
2245	4	3	1	0	72.8	-	2245
2300	14	14	0	0	77.1	88.6	2300
2315 2330	5 2	5	0	0	66.5 56.6	-	2315 2330
2330	2	2	0	0	90.1	-	2330
07-09	1744	1505	187	52	67.1	75.8	07-09
	5449	4784	518	147	67.6	76	09-16
09-16 16-18	1663	1501	147	15	70.7	78.5	16-18

				ata a control		
Time	Total	Cars	Light Trucks	Heavy Trucks	Average Speed	85th %ile
0000	2	2	0	0	78.4	-
0015	0	0	0	0	-	-
0030 0045	2	2	0	0	<u>51.8</u> 71.5	
0100	2	0	2	0	80	-
0115	2	0	2	0	63.5	-
0130 0145	3	<u> </u>	2	0	90.8	
0200	2	2	0	0	56.6	-
0215	3	3	0	0	70.6	-
0230	0 3	0	0	0	- 72.5	-
0300	2	2	0	0	76	
0315	0	0	0	0	-	-
0330 0345	3	2	0	0	72.8	
0343	9	9	0	0	84.1	
0415	7	3	4	0	85.9	-
0430 0445	14 13	<u> </u>	4	0	82.4 79	102.4 92.9
0500	13	9	5	0	85.4	92.5
0515	45	36	7	2	79	91.3
0530 0545	<u>54</u> 74	47 59	7 15	0	78.3	91.3 87.4
0600	89	64	25	0	74.7	84.5
0615	80	62	15	3	76.8	84.6
0630	112	94	17	1	74	84.1
0645	<u>163</u> 138	<u>128</u> 116	32	<u>3</u> 0	73.3	82.8 84.1
0715	187	137	46	4	74.2	82.3
0730	215	180	31	4	71.7	79.5
0745 0800	202 240	162 199	28 29	12 12	70.6 67	79.6 75.2
0800	240	209	17	2	66.1	75.2
0830	253	212	36	5	64.9	73.8
0845	265 225	221 177	34 39	<u>10</u> 9	64.9 64.3	74.5
0900	225	183	34	8	64.4	73.1
0930	191	164	22	5	69.7	77.4
0945	205	170	31	4	70.3	78.7
<u>1000</u> 1015	<u>219</u> 245	<u>176</u> 193	<u> </u>	<u>6</u> 11	<u>68.4</u> 68.4	<u>75.8</u> 76
1030	221	182	30	9	69.9	78.1
1045	226	187	32	7	71.6	78.3
1100 1115	225 222	<u> </u>	36 26	<u>12</u> 7	69.4 70.5	77.8
1130	208	169	31	8	72.1	80.6
1145	183	148	26	9	72.2	80.1
1200 1215	213 225	174 189	<u>34</u> 26	<u> </u>	70.9	78.3 79.6
1213	193	162	20	9	71.8	79.2
1245	162	134	24	4	70.4	77.6
1300 1315	193 188	172 158	19 23	2 7		79.5 79
1315	169	129	32	8	69.8	79.4
1345	189	154	26	9	73.4	80.3
1400 1415	208 218	163 173	43 42	2	72.1 69.5	80.8
1415	210	179	30	6	67.3	76.7
1445	213	184	20	9	65.5	73.8
1500 1515	263 206	217 182	<u>32</u> 21	<u>14</u> 3	<u>65.7</u> 69.6	74.1 77.4
1530	193	169	23	1	67.8	77.9
1545	178	143	30	5	68.4	78.1
1600 1615	191	159 146	28 30	4 5	73.7	81.9 84.2
1615	<u>181</u> 218	146	24	3	74.1	84.2
1645	160	137	23	0	70	79
1700	129	<u>115</u> 151	14 25	0 4	74 71	82.7 78.6
1715 1730	<u>180</u> 164	151	25	2	73.8	78.6 81.2
1745	137	122	14	1	70.9	80
1800	88	75	13 14	0	76.4	85.4
<u>1815</u> 1830	<u>100</u> 70	<u> </u>	9	1	75.2	<u>85.7</u> 83.6
1845	58	49	9	0	75.9	85.1
1900	45	40	3	2	75.5	81
1915 1930	<u>58</u> 53	47	<u>11</u> 5	0	80.5	92.3 87
1945	46	41	3	2	67.5	74
2000	47	43	4	0	74.6	85.8
2015 2030	38 30	29 27	9	0	75.4	85.9 86.7
2045	39	36	3	0	74	83.9
2100	28	25	3	0	74.2	86.3
2115 2130	10 20	<u>6</u> 19	2	2	75 79.1	- 89.4
2130	20	19	3	0	79.1	88.9
2200	14	10	4	0	74	88.6
2215	12 22	12	0	0	67.7	81.5
2230 2245	12	<u>22</u> 10	0	0	80.5 67.9	92.9 88.8
2300	25	23	2	0	77.6	85.8
2315	8	8	0	0	67.8	
2330 2345	6	5 2	0	0	73.2 60	
07-09	1728	1436	243	49	68.7	78.3
09-16	5821	4797	832	192	69.4	77.9
16-18 00-00	1360 10463	1161 8687	180 1498	19 278	72.5 70.6	81 79.7
00-00	10403	000/	1430	210	70.0	19.1

85th %ile

-

--

--

> --

86.1

89.3

84.3 90.1

83.9

83.1 84.9 82.2 82.8 81.9 77.7

79.3 72.7 74.8

73.8 72.3 74.6

74.6 75.3 76 75.4 78

78.4 75.7 77.2

79.1 76.5 74.5

74.2 72.9 77.9

75.4 76.3

76.1

79.3 80.1

79.2 80.5 73.2 75.4 74.3

73.1 75.2 75.9 79.9

79.4 80.8

82.6 83 79.6 80.2 87.3 82.3

81.8 80.1 83.3

81.4 80.3

85.5

80.8 82.1 84.7 83.6 93.2 94.2 80.7 87.9

-

-

96.8

86.6 95.6

91.7

87.2 -77

76.3 81.2

78.3

Average Speed

85.1

70.2 73.9 50.2 -

> --

66.4

-71.3 75.9 77.8

90.5 87.6

83.7 72.2

83.7

75 76.1

72.7

73.2 75.5 75.2

73.2 73.3 70.2

70.3 64.7 65.6

65.3 63.6 64.8

65.9 68.6 68.2 69.6

69.3 67.9 69.5 70.8

68.4 66.6

66.1 66 70.3

69.1 69.9

68.3 69.9 70.3 71.8

71.5

72.7 66.4 66.7 65.4 66

67.5 65.9 70.2

70.5 72.3 74.5 72.2 72.4

73.5 76.7 73.6 74.7 72 73.7

72.7

74.2

70.8 73.2 72.3 75.4 83.9 77.6 71.4 75.2

72.9

73.5

69.8

77.1

78.9 83.7 80.1

75.5

67.7 68.3 72.5

69.6

Time	Total	Cars	Light Trucks	Heavy Trucks	Average Speed	85th %ile	Time	Total	Cars	Light Trucks	Heavy Trucks
0000 0015	3	3	0	0	86.6 81.8	-	0000 0015	0 4	0	0	0
0030	4	2	2	0	82.5	-	0030	0	0	0	0
0045	0	0	0	0	- 109.9		0045 0100	0 3	0	0	0
0115	0	0	0	0	-	-	0115	2	0	2	0
0130 0145	1 2	0	1 2	0	65.2 71.4		0130 0145	2 0	2	0	0
0200	2	0	2	0	76	-	0200	0	0	0	Ő
0215	0	0	0	0	- 77.8		0215 0230	0	0	0	0
0230 0245	3	2	1	0	78.7		0230	3	1	2	0
0300	2	2	0	0	86.2	-	0300	0	0	0	0
0315 0330	2 4	2 4	0	0	76.3 73.2		0315 0330	0	0	0	0
0345	3	3	0	0	87	-	0345	1	0	1	0
0400 0415	1 0	<u>1</u> 0	0	0	81.6		0400 0415	9	9	0	0
0430	13	8	5	0	77.4	90.1	0430	4	2	2	0
0445 0500	20 13	15 7	5 6	0	79 72.9	95.5 82	0445	<u>8</u> 11	7 10	1	0
0515	16	14	2	0	71.1	79.2	0515	22	14	8	0
0530 0545	45 56	45 49	0 4	0 3	70.4	78.9 83.2	0530 0545	57 54	46 39	11 12	0
0600	29	22	6	1	74.1	79.3	0600	76	54	12	4
0615	60	52	7	1	72	83.1	0615	86	64	20	2
0630 0645	<u>112</u> 114	95 102	17 12	0	72.2 73.8	78.9 82.1	0630 0645	120 130	<u>112</u> 111	<u>8</u> 19	0
0700	99	89	9	1	73.2	81.2	0700	126	98	28	0
0715 0730	122 108	101 90	21 18	0	70.8 71	78.2	0715 0730	132 177	95 150	35 26	2
0745	150	123	23	4	71.2	78.6	0745	175	137	37	1
0800 0815	159 233	139 207	16 23	4 3	64.6 66	72 72.9	0800 0815	200 210	178 184	20 26	2 0
0815	233	207 229	23	3 6	64.2	72.9	0815	189	184	43	3
0845	280	243	32	5	65.3	73.1	0845	208	178	28	2
0900 0915	182 207	139 184	41 21	2	66.3 65.7	73.2	0900 0915	168 194	145 154	23 37	0
0930	179	160	17	2	65.9	73.8	0930	208	161	44	3
0945 1000	199 177	167 153	30 23	2	67.2 67.4	74.7 75.3	0945	203 201	174 167	26 30	3 4
1015	173	161	12	0	66.8	74.3	1015	198	169	25	4
1030 1045	180 169	162 147	18 21	0	67.3 66.6	73.1 74.5	1030 1045	228 186	194 146	34 39	0
1100	207	174	28	5	65.4	73.4	1100	189	146	21	1
1115	190	169 167	20	1	66.1	74.4	1115	219	181	36	2
1130 1145	190 194	167 172	22 22	<u>1</u> 0	66.8 66.6	74.5 72.9	<u>1130</u> 1145	207 212	178 182	27 27	2
1200	174	151	23	0	69	75.2	1200	199	180	13	6
1215 1230	183 177	171 156	10 19	2	65.8 69	74.1 75.8	1215 1230	176 168	147 145	29 22	0
1245	200	173	25	2	68.8	75.2	1245	153	129	24	0
1300 1315	154 193	129 162	25 27	0 4	69.5 68.8	78.7 76.5	1300 1315	195 156	167 134	28 21	0
1330	166	147	18	1	68.5	76.7	1330	167	134	34	2
1345	165	148	14	3	70	79	1345	160	143	17	0
1400 1415	120 179	100 160	20 18	1	69.6 69.3	81.2 77.8	1400 1415	181 163	159 127	17 34	5
1430	221	191	27	3	64.8	73.8	1430	203	173	28	2
1445 1500	154 183	140 168	14 15	0	66.9 62.9	75.7 72.8	1445 1500	201 202	176 176	23 25	2
1515	190	172	18	0	65.8	73.3	1515	200	169	29	2
1530 1545	239 218	213 195	26 23	0	65.9 67.2	73.6 76	1530 1545	173 120	152 97	21 23	0
1600	203	172	31	0	69.9	77.3	1600	168	146	22	0
1615	219	185 164	34	0	69.1 70.5	76.9	1615	166 175	139	26 15	1
1630 1645	190 230	164 205	26 25	0	70.5 71.3	77.1 79.6	<u>1630</u> 1645	175 132	160 115	15 17	0
1700	125	110	14	1	72.8	81.4	1700	125	111	14	0
1715 1730	181 140	168 129	13 11	0	70.9 73.9	79.3 82.8	<u>1715</u> 1730	151 109	132 94	19 15	0
1745	127	117	10	0	73.2	81.9	1745	98	82	13	3
1800 1815	107 100	100 87	7 13	0	75.4	83.1 80.2	1800 1815	110 67	103 55	7 12	0
1830	86	79	7	0	72.8	83.8	1830	70	64	6	0
1845	55	49	6	0	74.1	85.8	1845	41	34	7	0
1900 1915	39 33	34 28	5 5	0	82.4 77.2	97.4 90.7	<u>1900</u> 1915	56 53	53 52	3	0
1930	37	33	3	1	75.8	82.7	1930	41	36	5	0
1945 2000	35 41	31 37	4 4	0	73.1 69.5	83.3 81.3	1945 2000	38 53	28 38	10 15	0
2015	37	30	7	0	73.8	81.2	2015	32	28	4	0
2030 2045	34 12	<u>33</u> 10	1 2	0	80 81.2	89 94.3	2030 2045	42 20	36 19	6	0
2100	18	14	4	0	78.6	85.7	2100	23	21	2	0
2115	28 19	23 16	3	2	76.5	86.4	2115	20	19 15	1	0
2130 2145	19 23	16 20	3	0	78.2 76.1	86.4 91.3	2130 2145	16 10	15	<u>1</u> 0	0
2200	21	20	1	0	78.8	93.5	2200	10	9	1	0
2215 2230	14 12	13 12	<u>1</u> 0	0	80.1 75.8	95.4 95.8	2215 2230	6 18	6 16	0	0
2245	8	3	3	2	88.2	-	2245	12	10	2	0
2300 2315	14 5	13 5	0	1 0	78.9 73.7	94.2	2300 2315	11 20	11 17	0 3	0
2330	10	8	2	0	74.2	-	2330	12	10	1	1
2345 07-09	2 1407	2 1221	0 163	0 23	88.4 67.2	75.8	2345 07-09	0 1417	0 1163	0 243	0 11
07-09 09-16	5163	4531	597	35	67.2	75.8	07-09	5230	4423	757	50
			101					4404	070		
16-18 00-00	1415 9286	1250 8136	164 1080	1 70	71.1 68.8	79.4 77.6	16-18 00-00	1124 9154	979 7738	141 1341	4 75

4/02/2022

85th %ile

97

-

-

-

-

-

---95.5 93.1

88.4 96.2 88.6

86.8 86.8 84 83.4 82.5 80.3

82.9 79.6 77.5 75.9 76.3 70.6 71.2 72.9 69.1 76.1 73.2 71.5 78.8 76.8

81.2 79.9 78.4

78.3 76.5 80.1 77.8

78.8 83.7 79.2 79.2 77

79.2 79.7 76.3 76.7

76.6 75.8 76.1 75.6 77.7 80.1 81.9

82.7 80.3

81.8 81.3 80.8

82.2 82.5 84.2 85.5

89.8 87.6 85.3 84.6 78.7 75.6

81.8 83.2 82.3 90 81.5 79.5 82.1 87.9

82.8 88.4 91.3

84 90.8 84 -77.4 77.6

81.4

79.6

Average

Speed 72.5 79.8 86

79.7 72.8

88.5

83.1

81.9

-60.2 77.7

-

85.2 95.4 86.7 82.6

79.9 76.8

80.4 82 77.7 79.1 73.8 76.9 74.2 74.1 72 74.1 71.2

 69.4

 66.9

 67.4

 62.2

 63.9

 64.4

 60.8

 67.5

 55.9

 64.7

 69.7

 69.4

 72.3

 71.6

 70.6

70.6 70 70.9 71 70.1 74.8 71.5

70.5 67.4 71.3 71.2 68.7

68 67.8 67.1 67.3 66.9 69 72.7 73.5 74.6 69.1

72.5 73.1 73.7

74.4

72.6 73.8 75.6 75.6 77.7 73.6 74.5

70.4 67.2 72.2 71.9 72.4 77.1 70.9 72.3 72.1 77.3

70.5 77.4 79

79 78 77.1 73.1 76.3 67.9 68.5

72.9

000 7 6 0 7 7 0 0 0 001 0 0 0 7 1 0 0 0 003 0 0 7 1 0	Time	Total	Cars	Light Trucks	Heavy Trucks	Average Speed	85th %ile	Time	Total	Cars	Light Trucks	Heavy Trucks
0300 4 4 0 0 0 0310 0 0 750 1 1 0 <				0	1	83	-				0	0
0100 0 6 6 73.1 . 0100 2 2 0	0030	4	4	0	0	75.6		0030	4	4	0	0
0103 3 1 2 0 74.5 0103 4 4 0 0 88.8 000 0 0 0 0 0103 2 0 0 88.8 000 0												
0446 0 0 0 .												-
1210 4 4 0 0 88.8 1210 2 0 0 88.7 1215 0 0 0 0 0330 2 2 0 0 123 1330 0 <th< td=""><td>0145</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td></td><td>0145</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	0145	0	0	0	0	-		0145	0	0	0	0
1290 2 2 0 0 88.6 . 1290 2 2 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
0300 2 2 0 0 0 0 0 0 0 0 0310 2 2 0 <th< td=""><td>0230</td><td>2</td><td>2</td><td>0</td><td>0</td><td>88.6</td><td></td><td>0230</td><td>2</td><td>2</td><td>0</td><td>0</td></th<>	0230	2	2	0	0	88.6		0230	2	2	0	0
0350 6 8 9 0 62.1 0382 6 6 0 0 0410 1 0 0 68.0 0416 6 2 2 2 0 0 08.0 0415 6 2 2 2 2 0415 2 2 0 0 08.3 0415 6 2 2 2 2 0500 1 1 2 0 0 74.5 64.9 0515 11 11 1 0 0 0515 12 10 0 0 74.4 89.9 0515 18 0 13 0 13 0 13 0 13 0 13 0 13 0 14 23 14 13 0 13 0 13 0 13 0 14 14 14 14 14 <			-									-
0846 1 1 0 0 86 . 0840 3 0 0 83 . 885 2 2 0 0 0440 13 11 2 0 000 85 . 885 2 2 0 0 0440 13 11 2 0 893 876 644 12 11 1 0 0 0500 62 41 0 0 14 1 1 0												
6416 2 2 0 0 683 6415 6 2 2 2 0430 13 0 3 0 602 955 16 12 4 0 0515 12 14 0 0 74.5 86.8 0605 18 17 1 0 0515 12 14 0 0 74.5 86.8 0605 18 17 1 0 0516 13 37.7 12 4 77.2 86.8 0615 18 10 0 10 0 0501 113 13 10 0 74.8 88.9 0713 134 10 10 11	0345	1	1	0	0	86	-	0345	2	2	0	0
0446 13 11 2 0 78.9 87.6 0 045 12 11 1 0 0 0509 4 4 0 0 78.1 87.6 0 0 13 2 0 0509 52 4 0 2 78.5 88.8 0030 38 30 0 0 0500 13 9 0 78.6 88.2 0000 74.4 30 11 0 0 0500 167 19 0 78.6 88.2 0045 74.4 18.9 10 11					-							
6500 4 4 0 0 84.1 6600 17 13 2 2 0510 12 10 2 0 74.5 84.9 66.5 19 17 1 0 0500 6.7 4.8 8 4 74.4 87.9 0604 9 30 13 0 0615 5.3 37 12 4 77.2 84.6 0645 81 60 19 2 0616 63 18 17 1 74.4 87.9 0665 13 112 21 2 1 1 74.4 87.7 0700 134 112 21 2 1 1 74.4 88.7 0700 134 112 21 2 1 1 74.4 88.7 0700 134 13 20 1 1 1 1 1 1 1 1 10 10					-							-
0500 62 41 9 2 7.45 86.8 663 36 30 6 0 0506 13 9 0 77.4 85 645 50 565 56 56 56 64 0 0500 113 94 19 0 77.8 86.2 666.5 114 104 20 0 0500 113 11 1 77.4 86.2 666.5 114 10 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	0500	4	4	0	0	84.1	-	0500	17	13	2	2
6565 57 45 8 4 76.4 87.8 0565 60 36 30 15 0 0500 43 39 6 0 77.4 87.8 0 000 43 30 13 0 0 0 0.0												
OffSo 15 53 37 12 4 77.2 84.6 OffSo 11 60 19 2 OffSo 113 84 19 0 78.8 84.2 OffSo 124 104 20 0 OffSo 122 123 166 3 74.8 84.9 OffSo 124 113 20 11 20 OffSo 122 123 66 75.3 OffSo 175 144 33 30 1 OffSo 124 11 0 60.9 75.3 0 0 177 23 2 0 0 177 23 5 3 0 10	0545	57	45	8	4	76.4	87.8	0545	50	36	14	
0645 104 85 10 0 76.8 80.2 0645 134 120 13 1 0710 101 85 17 1 13 12 21 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 1 1 2 1 <th1< th=""> 1 1 <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>												
0706 101 83 17 1 74.3 617 0715 6.2 6.5 16 3 74.6 85.9 0716 135 112 21 2 0716 152 152 112 21 3 66.9 75.9 0716 134 115 20 1 0716 152 177 23 2 68.6 75.8 0816 197 178 20 2 2 0810 218 198 22 0 64.6 77.8 0800 208 116 20 16 21 0 0 015 181 160 21 0 0 015 181 160 21 0 0 016 181 160 21 0 0 016 181 160 21 0 0 016 181 160 21 0 0 010 010 010 010 010												
0730 152 128 211 3 69 75.3 97.3 178 140 20 0 0745 153 142 14 24 2 66.2 77.9 178 140 20 2 2 0830 170 141 24 2 66.2 77.8 178 140 20 2 2 0845 245 221 24 1 66.3 77.8 178 160 20 177 16 20 20 163 16 3	0700	101	83	17	1	74.3	81.7	0700	135	112	21	2
0745 153 142 11 0 66 9 77 9 0 0745 174 134 39 1 0600 172 24 24 26 2 75.6 0600 201 173 22 2 64.8 75.6 0600 201 173 25 2 0600 218 188 32 0 64.9 71.8 0600 202 183 18 3 0600 167 142 11 4 67 75.5 0600 202 183 18 3 0600 182 193 0 0 77.3 77.3 0030 186 199 17 16 6 16												-
0e15 202 177 23 2 68 75.8 0e15 197 75.2 2 2 0840 248 242 21 3 64.8 75.8 0840 183 177 20 3 0845 183 164 11 4 67.3 0840 183 180 177 180					0							
0645 245 221 21 3 64.8 70.6 0600 218 168 32 0 64.9 71.8 090 183 163 3 0615 169 165 12 2 0.43 70.7 0905 181 160 21 0 0606 212 212 20 0 66 74.3 0905 181 100 22 23 4 1015 162 153 9 0 70.1 77.4 1005 220 120 166 77.3 1015 1024 120 220 20 167 13 7 1118 201 187 13 7 1118 201 187 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 16 12 118 120 23 120 24 </td <td>0815</td> <td>202</td> <td>177</td> <td>23</td> <td>2</td> <td>68</td> <td>75.9</td> <td>0815</td> <td>197</td> <td>175</td> <td>20</td> <td>2</td>	0815	202	177	23	2	68	75.9	0815	197	175	20	2
0900 218 188 32 0 64.9 71.8 0915 109 155 12 2 64.3 70.7 0930 167 142 11 4 67 75.5 0930 166 133 22 233 166 139 27 0 0930 176 161 15 0 69.3 77.3 1084 222 201 22 0 1105 142 203 28 0 1044 225 201 22 2 70.1 77.4 1045 242 203 28 3 1115 210 155 16 1 665 76.6 1115 234 16 1 242 18 203 28 3 4 1245 175 156 17 266.5 77.6 1100 200 14 4 120 16 0 16 16 16<												
0030 167 142 11 4 07 75.5 0045 163 164 163 164 183 22 0 0045 163 164 163 164 183 22 23 15 4 1000 166 171 0 0 773 1000 248 225 23 1 1100 166 177 168 100 163 1100 164 163 177 167 1100 166 177 167 1110 1100 166 177 167 1110 224 203 28 3 1110 1243 166 1100 166 171 169 271 1110 224 160 1100 166 171 165 1110 224 160 0 1110 124 160 161 171 171 171 171 171 171 171 171 171 <td< td=""><td>0900</td><td>218</td><td>186</td><td>32</td><td>0</td><td>64.9</td><td>71.8</td><td>0900</td><td>202</td><td>183</td><td>16</td><td>3</td></td<>	0900	218	186	32	0	64.9	71.8	0900	202	183	16	3
1000 232 212 20 0 66 74.3 1015 162 153 0 0.71 77.9 103 103 199 177 16 6 1005 125 201 22 0.11 77.4 1035 227 201 28 0 1106 125 201 122 101 77.4 1035 227 201 28 0 1106 178 167 163 78.9 1100 204 182 20 2 1200 178 197 20 160.5 78.8 120 215 208 173 31 4 1230 211 167 2 66.5 77.6 1245 144 128 16 0 1230 211 167 2 66.5 77.6 1245 144 128 16 0 0 1 1<0												-
1015 162 153 9 0 70.1 77.9 1030 176 161 15 0 99.3 77.3 1015 109 177 16 6 1046 225 201 22 2 70.1 77.4 1045 201 22 0 177 1045 201 28 0 1115 210 193 16 1 09.5 76.5 1115 230 201 20 1 1045 203 28 3 1245 175 156 17 2 05.5 77.6 1105 230 101 10												
1046 225 201 22 2 77.4 1045 200 182 20 2 1110 109 193 16 1 695 76.6 1110 223 186.4 76 1115 214 156 17 1 695 77.6 1115 224 20 66.3 77.1 1145 223 186 23 24 2 146 223 146 23 24 2 20 23 146 181 19 1 19 223 186 23 24 2 20 140 181 19 1 19 14 181 17 20 111 181 10 113 120 216 108 10 114 180 11 10 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 <td< td=""><td>1015</td><td>162</td><td>153</td><td>9</td><td>0</td><td>70.1</td><td>77.9</td><td>1015</td><td>199</td><td>177</td><td>16</td><td>6</td></td<>	1015	162	153	9	0	70.1	77.9	1015	199	177	16	6
1115 210 193 16 1 69.9 77.7 1130 174 156 17 1 69.9 77.7 1145 220 196 22 2 66.3 73.1 1145 220 196 19 0 70 77.8 1145 201 181 19 1 1230 211 187 24 0 71.3 75.5 1200 223 29.9 42 2 1300 166 167 12 69.5 78.3 1215 128.5 17.3 31 4 1300 166 167 18 17 2 69.5 76.5 1245 144 128 16 0 1330 160 167 160 17 2 69.5 76.5 1445 180 150 28 1 1445 228 209 24 266.7 74 1445 168 160 26 2 2 2 2 2 2 2 2<				22								
113017415617169.977.7113022016622266.373.1120017815720169.577.812002320.94221215208118724071.377.5120023320.9422124517515617269.577.612451144128160130016814918173.481.31300173152201131520116712512064.41315167155120133021920217069.276.51330208163250134516915614077.1376.41335208164169260144016116270.977.614461691602000144320529.924266.77414461881602221545214167233166.775.1154514416166262154521019514166.577.515451541481411154526723.331368.478.11551541481411												
1210 178 157 20 1 69.5 78.9 1215 209 190 19 0 70 77.8 1245 175 156 17 2 69.5 77.6 1300 168 149 18 1 73.4 81.3 1315 201 167 12 2 68.4 76.4 1330 219 202 17 0 69.2 76.5 1345 169 155 14 0 71.3 78.4 1445 210 161 31 2 70.5 1300 160 29 0 1445 210 143 3 2 70.5 1400 160 160 29 3 1445 210 161 66 76.3 76.7 1440 180 167 29 3 1545 214 187 27 0 67.6 78.1 1515 144 169 20 2 154.5 163 164 14	1130	174	156	17	1	69.9	77.7	1130	223	196	23	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
1245 175 156 17 2 09.5 77.6 124.5 144.4 128 16 0 1315 201 187 12 2 68.4 76.4 131.5 1300 173.4 152 20 1 1330 219 202 17 0 69.2 76.5 1330 128.0 183.3 25 0 133.4 169 155 14 0 71.3 78.4 1330 208 183.3 25 0 0 134.5 179 150 28 1 0 144.5 29 9 0 144.5 29 144.5 29 24 2 66.7 74.7 144.5 208 181 25 2 2 151.5 214 187.7 1650 188 160 28 2 2 144.5 288 2 2 144.5 288 160 288 161 144 14 144 144 144 148 144 148 144 148 167 144 167 <td></td>												
1315 201 187 12 2 68.4 76.4 1330 219 202 17 0 69.2 76.5 1345 169 155 14 0 71.3 78.4 1400 167 149 16 2 70.6 79.7 1445 235 209 24 2 66.7 74 1445 235 209 24 2 66.7 74 1500 228 212 15 1 66.9 76.2 1530 275 258 17 0 67.6 78.1 1530 275 258 17 0 66.9 73.9 1545 210 195 14 168.5 77.5 1530 194 167 23.3 31 3 68.4 78.1 1610 181 77.8 0 77.6 78.9 155 12.6 21 1745 186 161 25 0 73.6 82.2 174.5 <	1245	175	156	17	2	69.5	77.6	1245	144	128	16	0
1330 219 202 17 0 692 76.5 1345 163 25 0 1340 169 155 14 0 71.3 78.4 1345 179.7 1345 1345 179 150 28 1 1400 167 149 16 2 70.6 79.7 1415 180 157 20 3 1435 225 209 24 2 66.7 74 1415 180 157 20 3 3 1445 28 2 2 150 144 187 27 0 67.6.3 150 144 180 180 26 2 2 153 148 14 1 1445 208 181 1 1 160 23 4 1 160 160 180 161 180 180 148 148 14 1 1 161 161 161 161 161 161 161 161 161 161 161 161 161 <												-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1330	219	202	17	0	69.2	76.5	1330	208	183	25	
143020919415070.579.7144523520924266.77415002282121516676.3151521418727067.676.1154521019614166.577.5154521019632072.481.7160022819632072.481.7161526723331366.478.1163020217824071.998.0.81700181173806977.6171518616125073.682.317301801737072.579.917301801737072.579.917301801737077.882.5183016814373.682.518301644071.482.718455344071.483.8193068644071.483.8193068644071.483.420154423400194553297073.883.120004743071.483.8193068644071.483					-							0
144523520924266.774150022821215166.776.3151521416727067.678.1153027525817066.976.2154521019614168.577.5160022819632072.481.7160120217824073.980.8163320217824073.980.817151861612507.611651161760181173806977.617451861437.67.6117611811351745186104207583.21171513611811801745186104207583.218086711501805106104207387.420011330190556506080.382.5194555322193068644071.482.71945551150190056506080.392.42233100221193068644071.8												
1515 214 187 27 0 67.6 78.1 1530 275 258 17 0 66.9 76.2 1545 210 195 14 1 68.5 77.5 1615 228 196 32 0 72.4 81.7 1615 2267 233 31 3 68.4 78.1 1630 202 178 24 0 73.9 80.8 1645 208 187 21 0 71 79.9 1630 157 129 26 2 1700 181 173 8 0 69 77.6 1700 118 113 5 0 1735 186 161 25 0 73.6 82.3 174 130 118 133 0 1745 185 168 14 3 73.6 82.5 174.5 138 118 180 0 173 130 0 173 130 0 174.7 82.6	1445	235	209	24	2	66.7	74	1445	208	181	25	2
154521019514166.577.51545163148141160022819632072.481.7160151128214161626723331366.478.11615128214163020217324073.980.8163015712926216452081872107179.216451521361511700181173806977.6170011811350174518616125073.682.31715136116160174518516814373.682.5174512611313018001371289074.78218009077130181513812413176.786.61815938922218301061042077.283.218308671150194654503169.281.51900514290191570673077.283.4200413740200047434071.882.5502<												
1600 228 196 32 0 72.4 81.7 1615 267 233 31 3 664 78.1 1630 202 178 24 0 73.9 80.8 1645 208 187 21 0 71 79.2 1645 208 187 21 0 71 79.2 1745 180 161 25 0 73.6 82.3 1715 136 118 13 0 1730 180 173 7 0 72.5 79.9 1730 139 124 15 0 1745 185 168 14 3 73.6 82.5 174.5 136 118 18 0 1800 137 128 9 0 74.7 82 180.9 99 2 2 1835 138 124 13 1 76.7 86.6 1815 93 89 2 2 2 1645 54.8 7 0												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1600	228	196	32	0	72.4	81.7	1600	151	126	21	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1645	208	187	21	0	71	79.2	1645	152	136	15	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1715	186	161	25	0	73.6	82.3	1715	136	118	18	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1800	137	128	9	0	74.7	82	1800	90	77	13	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1830	106	104	2	0	75	83.2	1830	86	71	15	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					3		87				7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1915	70	67	3	0	77.2	88.6	1915	53	48	2	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2000	47	43	4	0	71	83.8	2000	41	37	4	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2030	31	31	0	0	73	83.1	2030	63	59	4	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2115	42	39	1	2	70.8	84.9	2115	46	42	4	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		33	27									
2230 11 10 1 0 81 94.6 2230 17 15 2 0 2245 18 12 5 1 81.3 89.5 2245 18 18 0 0 2300 15 11 4 0 73.2 88.7 2300 33 28 5 0 2315 11 8 3 0 74.3 87.4 2315 18 14 3 1 2330 13 10 3 0 74.3 91.3 2330 15 15 0 0 2345 10 9 1 0 69.4 - 2345 5 3 2 0 07-09 1325 1153 157 15 68.2 76.1 07-09 1429 1204 209 16 09-16 5606 5062 516 28 68.5 76.9 09-16 5602 4915 632 55 16-18 1637 1469 162	2200	24	23	1	0	75	84.6	2200	31	29	2	
2300 15 11 4 0 73.2 88.7 2315 11 8 3 0 74.3 87.4 2315 11 8 3 0 74.3 87.4 2330 13 10 3 0 74.3 91.3 2345 10 9 1 0 69.4 - 07.09 1325 1153 157 15 68.2 76.1 09.16 5606 5062 516 28 68.5 76.9 16-18 1637 1469 162 6 71.7 80.1 16-18 1136 997 131 8	2230	11	10	1	0	81	94.6	2230	17	15	2	0
2315 11 8 3 0 74.3 87.4 2315 18 14 3 1 2330 13 10 3 0 74.3 91.3 2330 15 15 0 0 2345 10 9 1 0 69.4 - 2345 5 3 2 0 07-09 1325 1153 157 15 68.2 76.1 07-09 1429 1204 209 16 09-16 5606 5062 516 28 68.5 76.9 09-16 5602 4915 632 55 16-18 1637 1469 162 6 71.7 80.1 16-18 1136 997 131 8												
2345 10 9 1 0 69.4 - 2345 5 3 2 0 07-09 1325 1153 157 15 68.2 76.1 07-09 1429 1204 209 16 09-16 5606 5062 516 28 68.5 76.9 09-16 5602 4915 632 55 16-18 1637 1469 162 6 71.7 80.1 16-18 1136 997 131 8	2315	11	8	3	0	74.3	87.4	2315	18	14	3	1
09-16 5606 5062 516 28 68.5 76.9 09-16 5602 4915 632 55 16-18 1637 1469 162 6 71.7 80.1 16-18 1136 997 131 8	2345	10	9	1	0	69.4	-	2345	5	3	2	0
16-18 1637 1469 162 6 71.7 80.1 16-18 1136 997 131 8												
00-00 10212 9131 1013 68 70.1 79 00-00 9818 8548 1173 97	16-18	1637	1469	162	6	71.7	80.1	16-18	1136	997	131	8
	00-00	10212	9131	1013	68	70.1	79	00-00	9818	8548	1173	97

5/02/2022

Southbound

85th %ile

99.8

-

-

-

-

-

-

-

-

93.6

91.5

83.5 84.5 85

86.7 81.6 86 85.1 83.7

85.7

84 81.4 82.1 78.5 82.4

82.4 81.8 78.8 80.8 76.5 79.4 79.2

78.4 78.4

80.4

80.3 79.3 80.6

78.4 78.5 82.2 79.6

83.7 78.8 79.8 81.6 79 79.5 78.7 82.9 79.9

82.4

83.4 82.4 83.3 81.5 83.7

80.4

83.9 87 86.4

87.1 86.9 84.7 85.7 89.6

90.6 88.2 84.2 86.3

80.4 87.2 87.1

81.1 87.2 92.3 84.5 84

93.5

94.6 83.7

85.4 87.7

88.5

79.9 82.6

80.1

84.1 81.7

Average Speed

73.7 79.8 86

74.6 78.9

-

85.4 97.7

78.7

75.5

86.9

87

95.1 109.5

85.4

84.8

88 78.6 66.1 75.1 75.8 76.9 80 74.3 75.2

73.7 74.9 76.6 74.9 73.4 73.5 70.8 73.7 73.2 70.8 70.8 70.9

68.1 72.8 70.1 70.9

69.7 72.1

70.5 70.7 72

70.9 71.2 74.3 71.3

71.3 74.8 71.2 71.4 73.4 70.5 71.2 70.2

70.2 75 70.1 74

73 72.9 74.5 74.5 74 72.9

74.8 75.3 75.8

78.8 79.2 73.8 74.8

78.7 76.7 75.7 72.4 72.3

71.1

74.1 72.5 75.4 76.8 74 73.8

80.3

80.5 75.8

72.5 74

68.3

69.1 73.8 71.6

74.2

Time	Total	Cars	Light Trucks	Heavy Trucks	Average Speed	85th %ile	Time	Total	Cars	Light Trucks	Heavy Trucks
0000 0015	12 0	12 0	0	0	74.5	85.7	0000 0015	8	8 12	0	0
)030)045	4 6	4 6	0	0	99 83	-	0030	8	8	0 2	0
100	6	4	2	0	72.9		0100	9	7	2	0
115 130	1 4	1 4	0	0	79.6 86.1		0115 0130	0	0	0	0
45	2	2	0	0	72.3	-	0145	4	4	0	0
00 15	0	0	0	0	- 78.1		0200	2 8	2 8	0	0
30	4	2	2	0	78.3	-	0230	0	0	0	0
5 0	0	0	0	0	- 69.5		0245 0300	3	3	0	0
15	2	2	0	0	55.1	-	0315	0	0	0	0
330 345	8	8	0	0	66.8 82.1	-	0330 0345	0 8	0 8	0	0
00 15	3	3	0	0	85.5 69	-	0400 0415	2	2	0	0
30	3	3	0	0	83.9	-	0430	3	3	0	0
45 500	7	7	0	0	85.8 94	<u> </u>	0445 0500	20	15 4	4 2	1
515	11	11	0	0	75.3	87.4	0515	15	13	2	0
530 545	26 35	20 25	4 9	2	79 83.9	89.3 93.6	0530 0545	7 19	5 15	2 4	0
600	26	24	2	0	75.3	92.2	0600	27	26	1	0
615 630	29 56	26 54	3	0	75.5 75.9	87.2 87.2	0615 0630	39 43	35 38	4 5	0
645	52	43	9	0	79.6	89.7	0645	43	34	9	0
700 715	61 40	51 29	10 10	0	77.2	85.5 84.9	0700 0715	53 71	42 53	9 15	2 3
730	80	68	10	2	72	81	0730	60	53	7	0
745 800	122 58	95 53	25 5	2	72.4 70.9	81.6 80.3	0745 0800	90 114	70 97	15 14	5
815	95	85	10	0	72.7	81.4	0815	108	82	22	4
830 845	109 120	103 107	6 13	0	72.5 69.1	79.8 78.6	0830 0845	131 133	115 107	16 24	0 2
900 915	113 136	101 117	10 19	2	72.3 71.4	81.8 79.4	0900 0915	137 124	117 107	20 13	0 4
915 930	136	123	19	3	70.7	79.4	0915	124	130	13	5
945 000	153 164	136 157	14 7	3	73.7 68.6	83.8 77.7	0945 1000	186 191	163 172	20 15	3 4
)15	159	145	11	3	71	79.7	1015	222	203	19	0
30 45	183 176	163 163	<u>18</u> 11	2	68.7 71.7	79.2 78.9	1030 1045	162 197	139 176	18 20	5
00	195	178	17	0	69.4	78.5	1100	148	135	9	4
5 80	213 217	203 196	7 19	3	71.9 69.3	81.4	<u>1115</u> 1130	193 178	161 161	30 17	2 0
45	211	203	8	0	71.3	79.5	1145	170	145	21	4
00 15	203 197	188 188	<u>14</u> 9	1 0	73.1 70.2	79.7 79.7	1200 1215	177 216	163 192	13 23	1
80	167	156	11	0	70.4	78.8	1230	151	142	7	2
45 00	173 168	163 155	10 13	0	74.4	83.3 79.5	<u>1245</u> 1300	161 173	144 155	13 16	4
15	173 175	157 158	15 17	1	72.7 69.4	81 78.2	1315 1330	167 194	146 179	21 15	0
30 45	162	150	12	0	69.6	78	1345	194	143	21	0
00	150 163	135 158	14 5	1 0	72.6 71.5	81.1 80.6	1400 1415	143 195	129	14 21	0
15 30	158	150	7	1	70.6	80.9	1430	147	173 137	10	<u>1</u> 0
45 00	148 124	120 118	26 6	2	72.6 74.1	80.8 83.9	1445 1500	166 122	145 111	21 11	0
515	150	140	10	0	70.2	78.2	1515	199	178	20	1
530 545	134 139	121 128	12 11	1 0	71.3 74.4	82 84.1	1530 1545	134 116	122 102	12 13	0
600	137	129	8	0	72.5	81.1	1600	137	119	18	0
615 630	149 150	141 142	7 5	13	71.8 73.4	79.6 80.9	<u>1615</u> 1630	103 89	97 78	6 11	0
645	144	133	11	0	74.3	84.4	1645	93	80	13	0
700 715	128 119	118 110	9	1 0	73.2 74.1	83 83.9	<u> </u>	97 75	83 71	13 4	1 0
730	137	116	21	0	76.4	84.8	1730	91	82	9	0
745 300	125 109	110 95	15 13	0	75.1 77.1	84.3 85.1	<u>1745</u> 1800	79 72	60 58	19 12	0
815	69	62	7	0	75	84.7	1815	74	63	11	0
830 845	61 68	56 59	3 7	2	77 78.3	85.3 86.9	<u>1830</u> 1845	70 40	54 37	16 3	0
900	55	55	0	0	76.9	84.9	1900	36	32	2	2
915 930	62 63	52 60	9	1 0	74.3 73.4	83.4 83.1	1915 1930	40 48	35 47	5	0
945	41	38 27	3	0	74.6 77.2	83.8	1945 2000	53 38	45 35	8	0
2000	30 42	42	0	0	68.3	90.2 77.4	2000	66	62	4	0
030	26	25	1	0	69	77.6	2030	60	58	2	0
2045 2100	32 31	30 29	2	0	73.6 77.7	84.8 91.1	2045 2100	39 47	34 45	5	0
115 130	20 21	18 21	2	0	71.4 79.4	84.1 93.5	2115 2130	42 41	36 37	6 2	0 2
2145	16	16	0	0	77	89.6	2145	56	50	6	0
2200 2215	14 23	13 22	1	0	77.6 75	86.3 85.2	2200 2215	67 25	60 20	7 5	0
2230	13	13	0	0	69.1	85.5	2230	23	21	2	0
245 300	18 10	18 10	0	0	71.9 72.4	85.2	2245 2300	42 31	42 28	0 3	0
315	7	7	0	0	75.2	-	2315	13	7	6	0
330 345	6 4	6 0	0 4	0	66 72.1	-	2330 2345	17 14	17 12	0 2	0
7-09	685	591	89	5	72.2	81.4	07-09	760	619	122	19
9-16	4640	4270	343	27	71.3	80.1	09-16	4682	4170	467	45
6-18	1089	999	85	5	73.8	83.1	16-18	764	670	93	1

6/02/2022

Southbound

85th %ile

95.6

93.6

-

-

-

-

-

-

-

89.9 -

97.5 91.9

87.1 87.2 85.6

89.4 84.6

88.6 78.7 82.4 81.9 78.4 79.9 79.2 80.4 79 79.1 81.4 78.1

81.7 80.2 80.5 78.2 78.3 81

84.8 83.5 77.5 77.8

79 83.3

78.9

81.2 81.9

80.3

84.4 84.9 81.7 81.2 82.3 84.2 84.3

84.2 85.6

80.8

86.7 84.8

85

83.5 86.8 87.8

86.4

83.4

85.6

85.3

89.9 83.7 87.6 84.2 86.9

86.1

107.3

91.1 96

85.8 80.2 90.4

87.3

-

83 80.6

84.2

82.3

Average Speed

80.3

67.9 79.3

77.6 75.2

-

101.7

85.8 83.7 80.3

-

81.5

88.1

-

83.2 78.6 80.4 73.1

80.7

84 75.6 75.3 75.9 77.9

75 76.7

77.6 71 73.4 73.1 71.5 72.8 72.2 71.7 71.1 71.1 72.4

70.5 72 71.6 71.5

69.9 72 73.1 73.9

74.1 69.9 69.6 71.9 74

70.8

72 73.1

72.7

76.8 74.7 72.6 72.7 73.3 73.5 74.8

74.5 74.6

71.2

75.9 75.7

75.1

76 76.8 75.7

73.5

75

74.8

72.6

77 75 77.3 75.7 75.5

75.5 75

86.5

83.2 79.6

71.5 72.1 80.3

79.5 65.5

82.6

73.6 72.2

74.3

Time	Total	Cars	Light Trucks	Heavy Trucks	Average Speed	85th %ile	Time	Total	Cars	Light Trucks	Heavy Trucks
0000 0015	9 9	9 9	0	0	70.8 75.9	-	0000 0015	18 6	16 6	2	0 0
0030	3	2	1	0	68.9	-	0030	14	12	2	0
0045	6 4	6 4	0	0	86.5 76.7		0045 0100	10 2	10 2	0	0
0115	0	0	0	0	-	-	0115	0	0	0	0
0130 0145	2	0	2	0	65 -	-	0130 0145	0	0	0	0
0200 0215	0 4	0	0	0	- 82.4	-	0200 0215	0 4	0 4	0	0
0230	0	0	0	0	-	-	0230	3	3	0	0
0245 0300	4	4	0	0	75.7 82.5		0245 0300	2 0	2	0	0
0315	0	0	0	0	-	-	0315	0	0	0	0
0330 0345	2	2	0	0	81.8 82.4		0330 0345	0 4	0 4	0	0
0400	4	3	1	0	85.9	-	0400	2	2	0	0
0415 0430	2 8	2 8	0	0	72.6 79.6		0415 0430	0	0	0	0
0445	4	4	0	0	80.7	-	0445	5	5	0	0
0500 0515	4 3	4 3	0	0	75.5 72.7	-	0500 0515	<u>11</u> 6	9 5	2	0
0530 0545	11 14	11 11	0	0	81.6 77.9	100.7 91.5	0530 0545	6 10	4	2	0
0545	14	18	0	0	76.2	89.1	0545	10	11	5	0
0615 0630	26 28	19 26	6	1 0	75.3 79.1	91.2 90.9	0615 0630	15 27	13 27	2	0
0645	24	17	7	0	73.7	82.3	0645	30	28	2	0
0700 0715	29 31	25 27	4	0	75.9 76.1	85.8 84.1	0700 0715	43 36	35 31	5 5	3
0730	60	50	10	0	74	82.4	0730	43	34	9	0
0745 0800	58 85	51 70	6 15	<u>1</u> 0	75.5 73.6	86.1 84.1	0745 0800	51 88	43 74	8	0
0815	63	57	6	0	73.8	81.5	0815	86	72	12	2
0830 0845	101 115	88 110	12 5	<u>1</u> 0	71.9 73.9	82.8 81.4	0830 0845	84 129	66 112	16 17	2
0900	99	90	7	2	69.2	77.6	0900	114	108	5	1
0915 0930	94 157	81 151	<u>12</u> 6	<u>1</u> 0	73.2	81.4 80.2	0915 0930	146 160	128 140	16 15	2 5
0945	174	158	11	5	71.1	78.8	0945	195	160	32	3
1000 1015	<u>153</u> 145	<u>144</u> 133	<u>9</u> 11	0	70.9 70.4	78.8 79.2	<u>1000</u> 1015	230 217	<u>211</u> 189	15 27	4
1030 1045	156	151	4 10	1	71.3	79.6	1030 1045	232 190	193 171	35 17	4
1100	133 148	122 132	16	0	69.5 72.7	76.9 81.5	1100	197	180	14	2
1115 1130	144 181	133 167	11 14	0	74.1 67.5	82.3 76.9	1115 1130	166 155	149 143	13 11	4 1
1145	212	203	7	2	69.1	76	1145	209	179	28	2
1200 1215	145 222	132 204	<u>8</u> 18	5	72.1 70.4	81 77.5	1200 1215	192 180	181 160	<u>11</u> 19	0
1230	164	153	11	0	71.2	80.1	1230	187	170	17	0
1245 1300	164 139	155 127	9 8	0 4	69.4 70.3	78 77.8	1245 1300	153 177	139 164	<u>12</u> 11	2
1315	170	154	14	2	70.3	79.7	1315	194	178	12	4
330 345	139 163	130 156	9 7	0	69.8 74.1	79.2 83.2	1330 1345	174 152	155 135	18 15	1
400	151	147	4	0	71.9	81.8	1400	178	159	19	0
1415 1430	151 167	135 152	16 14	0	72.7 74.1	81.9 82	<u>1415</u> 1430	173 159	<u>161</u> 140	12 19	0
1445	156	150	6 7	0	72.8 72.4	82.1	1445 1500	174 147	151 129	23 17	0
1500 1515	148 131	141 125	5	1	71.2	81.5 82.1	1515	135	117	18	0
1530 1545	154 141	138 129	16 12	0	71 73	79.7 81.5	1530 1545	137 115	121 106	16 8	0 1
1600	155	142	13	0	74.2	81.2	1600	119	111	8	0
1615 1630	112 109	101 100	11 9	0	71.3 74.5	81.9 83.5	1615 1630	108 111	91 106	17 5	0
1645	93	87	6	0	75.4	84.4	1645	90	82	8	0
1700 1715	111 107	104 94	7 13	0	72.9 74.4	83 82.9	1700 1715	105 70	96 61	9 9	0
1730	78	66	12	0	74.3	82.2	1730	82	71	11	0
1745 1800	77 61	71 59	6	0	73.3 73.7	82.8 82.3	1745 1800	81 61	66 53	15 8	0
1815	76	66	10	0	79.3	88.9	1815	59	52	7	0
1830 1845	59 42	48 38	<u>10</u> 4	<u>1</u> 0	74.9 78	85.9 85.6	1830 1845	43 46	38 40	4 6	1
1900	54	47	7	0	76.4	85.8	1900	52	46	6	0
1915 1930	49 34	44 28	5 6	0	78.1 80.7	89.5 90.7	<u>1915</u> 1930	56 36	47 32	9 4	0
1945	42	38	4	0	75	86.9	1945	33	31	2	0
2000 2015	32 14	30 13	1	0	72.5 73.4	85.2 86.5	2000 2015	43 50	38 48	5	0
2030	13	13	0	0	80.2	97.9	2030	29	29	0	0
2045 2100	24 24	20 24	4 0	0	74.7 77	85 86.9	2045 2100	20 9	16 8	4	0
2115 2130	12 11	12 10	0	0	75.2 76.1	85.3 91.5	2115 2130	18 15	18 13	0	0
2145	13	13	0	0	77.9	91.5 86.8	2145	18	17	1	0
2200 2215	4	4	0	0	86.8 73.3	-	2200 2215	38 13	38 13	0	0 0
2230	15	15	0	0	86	- 101.8	2230	12	12	0	0
2245 2300	10 14	9 14	1 0	0	79.8 72.9	- 87.6	2245 2300	19 26	19 26	0	0
2315	8	8	0	0	82.9	-	2315	8	8	0	0
2330 2345	6 4	6 4	0	0	66.7 74.5	-	2330 2345	4	2 0	2	0
07-09	542	478	62	2	73.9	83.1	07-09	560	467	86	7
09-16 16-18	4301 842	3993 765	282 77	26 0	71.3 73.8	79.9 82.6	09-16 16-18	4838 766	4317 684	475 82	46 0
00-00	6502	5970	500	32	73.6	81.5	00-00	7065	6284	727	54

7/02/2022

85th %ile

94.5 -

-

--

-

-

-

--

-

97.7

96 91.7 90.4

82.7 84.9

88

85.5 85.4 80.5

80.2 81.5 80.3

74.3 76.5 73.7 70.4 74.3

73.6 73.6 74.9 78.8 77.8 74

80.3

78.3

78.3 78.4

78.6 75.4 77.1

79.4

79 80.7

79.2 77.3 79.4

80

78.4

78.4 78.7 75.1 73.4 75.8 75.6 78.2

76.5 81.8 82.8

80.6 81.5

81.1

82.1 85.1

84.5

89.5 90 86.4

88.2 85.2 83.9

79.7

90.5 92.2

85.1 82.5 87.8 86.8

98.8

92.8 86.4 107.5

-

91.6 -77.6 77.4

82.3

79.9

Average Speed

83.6 82

92.9 56.1

-

84.2

80.8 92.8

83.3 77.4

74.5

92.6

79.3 80.7 77.6

80.8 81.1 76.6

76.5 74 78.5

78 76.5 72.1

73.6 73.3 71.5

66 67.6 65.4 62.4 66.2

65.2

67.6 71.3 70.2 67.8 71.4

71.7

69.1 71.4

69.2 67.6 69.4

71

69.5 71.7

70.8

70.7 71.5 71.7

70.7 72.1

66.1 66.2 68.1 67.8 69.4 68.3 73.4 74.7

73.4 73

74.5

74.8 75.5

77.4

76.3 79.5 79.6

79.5 75.4 75.3

69.7

72.8 76.7

74 67.5 77.1 75.3

80.4

78.1 73.6 86.7

76.9 72.2 74.1

74.1 79.2 79.7 75.4 74.3 68.5 69.3

74.4

Time	Total	Cars	Light Trucks	Heavy Trucks	Average Speed	85th %ile	Time	Total	Cars	Light Trucks	Heavy Trucks
0000	2	2	0	0	81	-	0000	2	2	0	0
0015	0	0	0	0	-		0015	12	12	0	0
0030 0045	0 6	0	0	0	- 67.4		0030 0045	0 4	0	0	0
0100	2	0	2	0	104	-	0100	2	2	0	0
0115	4	2	2	0	76.2	-	0115	0	0	0	0
0130	4 4	4	0	0	81.5		0130	0	0	0	0
0145	4	2 0	2 0	0	87.7		0145	4	3	0	0
0215	3	3	0	0	82	-	0215	4	2	2	0
0230	4	4	0	0	75.3	-	0230	0	0	0	0
0245	0	0	0	0	-	-	0245	3	3	0	0
0300	3	1	2	0	72.2 83.6		0300	2	0	2 0	0
0330	5	5	0	0	88.2	-	0330	6	6	0	0
0345	3	1	2	0	93.4	-	0345	0	0	0	0
0400	0 4	0	0	0	-		0400	5 7	5	0	0
0415 0430	4	12	2	0	70 80.7	- 90.1	0415 0430	16	12	0 4	0
0445	11	8	3	0	78.7	88.1	0445	10	10	0	0
0500	12	9	3	0	76.3	80.1	0500	17	12	5	0
0515 0530	14 45	9 39	5	0	75.9 75.9	92.8 87.3	0515 0530	21 57	18 49	3 8	0
0545	43	39	8	2	73.9	80.6	0545	50	39	11	0
0600	44	34	10	0	72.3	81.4	0600	81	64	16	1
0615	89	76	12	1	75.5	82.9	0615	54	42	8	4
0630	102 134	82	19	1	77.1	84.1	0630 0645	138 133	124 115	9	5
0645 0700	134	<u>102</u> 91	32 23	0 3	76.9 73.5	84.7 81.5	0700	162	125	15 36	3
0715	119	99	17	3	72.8	81	0715	143	112	29	2
0730	148	127	19	2	71.9	79.8	0730	159	138	21	0
0745	162	141	17	4	71.7	79.7	0745	166	141	21	4
0800	127 235	114 207	8 26	5	69.5 65.4	76.8	0800 0815	219 236	186 216	27 19	6
0830	256	231	24	1	65.4	72.3	0830	177	156	20	1
0845	258	232	22	4	66.4	74.2	0845	217	184	33	0
0900	182 155	156 140	26 15	0	67 66.5	73.1 73.9	0900	173 243	128 209	38 30	7 4
0930	187	140	19	4	67.7	76.5	0930	243	209	38	3
0945	150	141	9	0	68.8	77.2	0945	221	189	31	1
1000	167	156	9	2	68.9	76.4	1000	206	192	13	1
<u> </u>	234 157	207 142	27 14	0	68.5 70	75 79.4	<u> </u>	214 209	192 173	18 33	4
1045	171	155	14	0	70	78.2	1030	209	193	16	0
1100	173	150	21	2	69.2	76.9	1100	195	167	25	3
1115	151	136	12	3	71.4	79.4	1115	195	166	29	0
<u>1130</u> 1145	145 179	125 160	20 18	0	68.2 67.6	75.1 76.5	<u>1130</u> 1145	161 185	129 164	30 19	2
1200	180	173	4	3	69.2	77.7	1200	232	202	27	3
1215	153	135	17	1	68.3	76.3	1215	168	144	22	2
1230	171	154	13	4	69.3	78.3	1230	199	173	20	6
<u>1245</u> 1300	167 178	150 155	17 21	0	69.2 69.2	77.9	<u>1245</u> 1300	140 168	116 150	22 18	2
1315	176	160	16	0	68.8	76.2	1315	178	158	19	1
1330	164	144	16	4	70.5	76.7	1330	200	159	39	2
1345	204	182	17	5	68.8	78.8	1345	175	143	31	1
1400 1415	145 163	132 153	12 10	1 0	71.1 69.4	78.7 76.9	1400 1415	178 192	161 145	16 42	1 5
1430	198	181	16	1	65.2	72.4	1430	212	174	38	0
1445	155	145	8	2	67	76.1	1445	205	170	33	2
1500	208 204	182 189	26 15	0	62.8 65.3	71.3 72.6	<u>1500</u> 1515	178 187	146 153	30 33	2
<u>1515</u> 1530	204	252	18	0	65.6	73	1530	163	133	26	3
1545	228	212	14	2	65.3	73.3	1545	201	170	29	2
1600	198	174	23	1	71	79.8	1600	184	145	34	5
1615	211	186	25	0	72.3	80.8	1615	161 161	144	17	0
<u>1630</u> 1645	239 212	212 190	25 22	0	72.2 72.5	79 81.5	<u> </u>	133	<u>138</u> 118	23 13	0
1700	209	196	12	1	70.9	80	1700	136	121	15	0
1715	188	172	16	0	71.4	79.3	1715	178	157	21	0
1730 1745	162 110	153 97	9 13	0	72.4	81.3 81.8	1730 1745	120 92	101 84	19 8	0
1745	83	71	10	2	76.5	87.3	1800	78	62	16	0
1815	95	84	8	3	77.1	85.8	1815	65	56	8	1
1830	48	42	6	0	76.3	82.4	1830	53	46	7	0
<u>1845</u> 1900	67 63	65 58	2 5	0	74.9 74.5	84.4 83.2	<u>1845</u> 1900	48 45	36 41	<u>12</u> 4	0
1900	44	44	0	0	75.3	83.3	1915	55	52	3	0
1930	45	41	4	0	75.6	83.2	1930	35	31	4	0
1945	45	33	12	0	70.5	81.8	1945	21	21	0	0
2000 2015	34 24	30 19	4 5	0	70 74.5	80.8 86.9	2000 2015	25 20	20 12	5	0
2013	24	21	4	0	74.5	88.1	2013	25	21	0	4
2045	25	24	1	0	76	86.4	2045	26	22	4	0
2100	6	6	0	0	80.7	-	2100	29	27	2	0
<u>2115</u> 2130	<u>24</u> 9	24 8	0	0	69.4 75.5	79.8	<u>2115</u> 2130	35 22	30 22	5	0
2145	17	15	2	0	70.5	82.9	2145	23	23	0	0
2200	14	13	1	0	82.6	99.7	2200	20	16	4	0
2215	12	12	0	0	84.3	93	2215	6	4	2	0
2230 2245	12 3	10 3	2 0	0	81.3 76.5	92	2230 2245	7 8	7 6	0	0
2300	4	3	1	0	83.3	-	2300	19	18	1	0
2315	4	4	0	0	74.1	-	2315	8	6	2	0
2330 2345	0	0	0	0	-	-	2330 2345	2 4	2 4	0	0
07-09	1422	1242	156	24	68.6	77	07-09	1479	1258	206	15
09-16	5015	4531	446	38	68	76.3	09-16	5430	4602	765	63
16-18	1529	1380	145	4	71.9	80.2	16-18	1165	1008	150	7
00-00	9227	8225	927	75	69.8	78.7	00-00	9382	7983	1294	105

8/02/2022

85th %ile

-

-

-

-

----94.3 97.6 95.2 93.5

91.2 87.8 84.9 83.5 85.7 83.3 82.1 80.1 80.2

76.7 74.2 79.1 79.5 75.9

76.2

76 78.2 76.9 75.9 77.3

77.9 80.3 77.6

79.8 77.6 79 85

77.9 77.9 82.4 79 82.3 77.9

80.1 80.5

75.9 74.2

75.2 79 74.8

78.2 80.4 80.7 83.2 82.8 86.7

83.7 86

86.1

85.8 86.1 85.9 92.3 86.5 90.7 84.7 82.7 86 86.9 84.3 85.4 83.5 86.6 93.4 84.4 91.6 97.4

88.1 -79.4 78.1

83.5 81

Time	Total	Cars	Light Trucks	Heavy Trucks	Average Speed	85th %ile	Time	Total	Cars	Light Trucks	Heavy Trucks	Average Speed
0000	5	3	2	0	75.6	-	0000	8	7	0	1	72.3
0015 0030	3	3	0	0	71.2 99.3	-	0015 0030	2	2	0	0	79.5
0045 0100	2	2	0	0	78.2 132.7	-	0045 0100	0	0	0	0	-
0115	2 4	4	0	0	92.5		0100	0	0	0	0	
0130	1	1	0	0	104.6	-	0130	2	2	0	0	97.8
0145 0200	2 0	<u>1</u> 0	0	<u>1</u> 0	69.5		0145 0200	0	0	0	0	- 68.1
0215	1	1	0	0	83.7	-	0215	0	0	0	0	-
0230 0245	1 0	<u>1</u> 0	0	0	78		0230 0245	0	0	0	0	- 62.1
0300	2	2	0	0	92.5	-	0300	0	0	0	0	-
0315 0330	6 5	4 5	2	0	76.1 76.6	-	0315 0330	3	3	0	0	86 76.7
0345	0	0	0	0	-	-	0345	3	3	0	0	84.9
0400 0415	7	7 8	0	0	88.7 78.5	- 94.9	0400	3	3	0	0	86.4 83.5
0430	10	5	5	0	80	-	0430	5	4	1	0	76.5
0445 0500	14 3	12 3	2	0	78.2 73.7	91.8	0445 0500	11 28	9 25	2 3	0	81.4 84
0515	14	7	7	0	85.5	96.4	0515	28	18	10	0	81.3
0530 0545	46 47	36 39	10 6	0	74.5 74.4	82.8 85.9	0530 0545	43 53	34 36	6 16	3	81.4 82.4
0600	59	50	8	1	72.7	81.5	0600	69	58	11	0	77.6
0615 0630	61 114	48 97	<u>11</u> 16	2	74.9 74.2	84 83.9	0615 0630	75 149	62 133	11 14	2	73.7 76.7
0645	128	112	15	1	75.6	83.3	0645	132	111	21	0	76.3
0700 0715	121 129	95 98	22 30	4	75.1 71.2	84.1 79	0700	122 152	103 117	19 32	0	75.9 73.8
0730	155	136	19	0	71.6	80	0730	193	156	35	2	72.3
0745 0800	180 188	150 176	24 12	<u>6</u> 0	71.5 68.4	81.3	0745 0800	227 192	200 164	27 24	0 4	69 65.3
0815	190	171	17	2	68.5	76.3	0815	206	187	18	1	66.7
0830 0845	218 244	176 214	40 29	2	67.1 67.6	75.4	0830 0845	227 207	191 172	34 34	2	70 70.7
0900	227	190	34	3	65.9	73.8	0900	194	157	37	0	67.8
0915 0930	182 165	162 147	19 18	1 0	65.8 67.8	73 77.4	0915 0930	190 212	150 186	36 24	4	66.5 68.8
0945	224	193	30	1	69.6	79.7	0945	188	162	25	1	70.2
<u>1000</u> 1015	149 173	<u>127</u> 149	20 24	2	69.5 68.8	78.2 75.9	<u> </u>	247 233	217 196	30 35	0	69.3 67.8
1030	162	138	24	0	68.3	77.4	1030	176	152	21	3	68.9
1045 1100	172 212	147 176	<u>19</u> 36	<u>6</u> 0	69.4 70	77.9	<u> </u>	184 189	164 152	20 34	0 3	71.1 71.4
1115	241	213	28	0	70.2	78.5	1115	171	152	18	1	68.6
<u>1130</u> 1145	<u>192</u> 196	<u>174</u> 177	18 16	0 3	66.6 70.1	74.2	<u>1130</u> 1145	<u>191</u> 189	147 153	40 32	4 4	70.9 69
1200	202	183	17	2	67.7	75.7	1200	193	172	21	0	70.7
1215 1230	196 175	171 159	23 15	2	69 69.8	77 76.5	1215 1230	159 188	141 158	17 30	1 0	73.9 70.3
1245	160	143	14	3	69.6	79.5	1245	161	130	31	0	70.1
1300 1315	196 172	175 147	21 24	0	69.9 69.4	77.9	1300 1315	166 205	141 167	23 37	2	75.6 70.7
1330	185	166	17	2	69.8	78.1	1330	203	165	35	3	73.7
1345 1400	174 145	152 118	21 25	1 2	71.4 70.8	81.7 80.8	<u>1345</u> 1400	187 194	147 167	38 27	2	69.9 71.1
1415	173	153	18	2	69.6	78.6	1415	188	154	30	4	71.7
1430 1445	177 155	156 138	20 15	1 2	68.7 68	77.3 76.5	1430 1445	191 205	155 173	36 31	0	67.1 66.1
1500 1515	156 177	140 155	16 22	0	67.6 67.9	76.1 78.1	1500 1515	235 207	191 177	43 27	1 3	66.8 69
1530	296	266	28	2	66.1	74.6	1530	207	182	36	2	64.8
1545 1600	262 226	223 190	35 36	4 0	67.5 71.1	73.5 78.5	1545 1600	181 213	148 193	31 20	2 0	69.7 72.4
1615	234	218	15	1	70.5	77.6	1615	171	133	28	6	72.4
<u>1630</u> 1645	189 243	165 222	24 18	0 3	73 71	81.5 79.2	<u> </u>	<u>171</u> 146	141 132	26 14	4 0	75.8 75.3
1700	204	192	11	1	71.4	81.2	1700	135	126	9	0	77
1715 1730	195 182	180 166	12 15	3	72.6	80.3 81.1	1715 1730	151 146	137 118	14 26	0	74.4
1745	163	147	14	2	73.3	82.9	1745	111	102	9	0	77.5
1800 1815	129 116	118 106	<u>11</u> 10	0	74.6 75.1	82.9 83.5	<u>1800</u> 1815	83 105	74 95	7 10	2 0	77.1 77.9
1830	83	81	2	0	74.5	83	1830	47	39	8	0	77.5
1845 1900	62 65	53 58	9 7	0	76.5 77.1	87.9 87.4	<u>1845</u> 1900	54 51	45 42	9	0	81.1 77
1915	56	54	2	0	72	84.8	1915	46	42	4	0	79
<u>1930</u> 1945	54 43	43 36	10 7	1 0	75.3 76.6	87.9 87.4	<u> </u>	60 56	52 50	7 6	1 0	71.3 73.1
2000	42	36	6	0	74.3	85.4	2000	31	25	6	0	70
2015 2030	34 35	32 35	1 0	<u>1</u> 0	75.5 74.4	82.9 85.6	2015 2030	43 32	41 28	2 4	0	73.6 72.8
2045	32	28	4	0	72.1	78.5	2045	42	35	7	0	77.3
2100 2115	16 23	16 18	0 5	0	74.1 78.2	85.6 89.7	2100 2115	35 28	34 25	1 3	0	75.7 76.5
2130	26	25	1	0	73.8	81.2	2130	30	26	4	0	81.7
2145 2200	8 17	8	0 3	0	70.1 75	- 83.6	2145 2200	21 16	21 16	0	0	75.9 78.9
2215	10	8	1	1	81.7	-	2215	19	18	1	0	81.1
2230 2245	16 2	16 2	0	0	84.9 68.7	95.5	2230 2245	4 6	4 6	0	0	62 78.5
2300	3	1	2	0	82.9	-	2300	27	24	3	0	77.5
2315 2330	8	6 6	2	0	95.5 81.9	-	2315 2330	6 5	6 5	0	0	73.1 71.9
2345 07-09	8 1425	8 1216	0 193	0 16	77.7 69.7	- 78.3	2345 07-09	7 1526	7 1290	0 223	0 13	77.6 70.1
07-09 09-16	1425 5296	4638	193 617	41	69.7	78.3	07-09	1526 5447	4556	845	13 46	70.1 69.6
16-18 00-00	1636 9803	1480 8596	145 1127	11 80	71.8 70.3	80.1 79.4	16-18 00-00	1244 9700	1086 8214	146 1401	12 85	75 71.5
00-00	3003	0000	1121	00	10.3	13.4	00-00	5700	0214	1401	00	71.5

Appendix C: Site Access AUL Concept Plan

DESIGN VEHICLE

Gold Coast Suite 26, 58 Riverwalk Avenue, Robina QLD 4226 P: (07) 5562-5377 W: www.bitziosconsulting.com.au Brisbane Level 2, 428 Upper Edward Street, Spring Hill 4000 P: (07) 3831-4442 E: admin@bitziosconsulting.com.au Sydney Studio 203, 3 Gladstone Street, Newtown NSW 2042 P: (02) 9557 6202

2.752	The second	1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	3021300
	REVISIONS		
Issue	Revisions/Descriptions	Drawn	Date
	Yamba Road Rural Supplies Lot 11 Access	R.TU	28/03/202

								Project	
									Rural Supplies Lo
	0	5	10	15	20	25			
Scale @ A3							1:500	Title	
									Yamba Con

9.00m R2.50m R2.50m 3.00m 40.00m 30.00m Gold Coast Suite 26, 58 Riverwalk Avenue, Robina QLD 4226 P: (07) 5562-5377 W: www.bitziosconsulting.com.au Brisbane Level 2, 428 Upper Edward Street, Spring Hill 4000 P: (07) 3831-4442 E: admin@bitziosconsulting.com.au Sydney Studio 203, 3 Gladstone Street, Newtown NSW 2042 P: (02) 9557 6202 REVISIONS Project Drawn Date R.TU 28/03/2022 Issue Revisions/Descriptions 001 Yamba Road Rural Supplies Lot 11 Access Rural Supplies Lo 15 20 25 10 5 0 Scale @ A3 1:500 Title Yamba Concept Plar

DESIGN VEHICLE

A Road Access Project Number Sheet Number Issue			
A Road Access an with Dimensions			
a Road Access an with Dimensions	Lot 11 Yamba Road TIA	_	
an with Dimensions	a Road Access		28/03/2022
· · · ·	an with Dimensions		

ANNEXURE P

LOCAL STRATEGIC PLANNING STATEMENT ASSESSMENT

LSPS Action	LSPS Action (guiding Principle)	Applicable	Complies (Y/Nor N/A)	Detailed Answer
1.1	 Does the proposal promote the long term liveability, health and resilience of the community, and supporting economic, social and cultural improvement? Particularly through: a) Protecting and enhancing terrestrial and aquatic biodiversity and our natural environment? b) A regenerative landscape planning approach that includes listening to First Nations People and caring for country? c) A hierarchy of avoiding, mitigating and managing natural hazards, as well as considering environmental constraints to be used in planning and design? d) Ensuring a collaborative approach to place making, that engages those who can contribute to making the Clarence Valley a community full of opportunities? e) North Coast Settlement Planning Guidelines 2019? 	All	Y	 Provides an economic service supporting the local agricultural sector. Future wastewater management system will protect water quality.
1.2	Does the proposal comply with the North Coast Urban Design Guidelines? Does the proposal comply with the <u>Urban Design for Regional NSW</u> guidelines?	All	N/A	
2.1	Does the proposal / process help expand existing partnerships with our First Nations communities to be involved in decision making? Have you referred to the NSW Government Architect 'Connecting with Country' and <u>Designing with Country</u> guidelines?	All	N/A	
2.2	Are First Nations communities involved in the development of strategic plans, inclusive of local growth management, housing and biodiversity strategies?	Strategic plans	N/A	
2.3	Has the proposal involved collaboration with Traditional Owners, Local Aboriginal Land Councils	All	N/A	AHIMS search shows no

LSPS Action	LSPS Action (guiding Principle)	Applicable	Complies (Y/Nor N/A)	Detailed Answer
	and DPIE in identifying sites of cultural significance and assets with economic development potential?			sites or aretfacts in vicinity
2.5	Have you considered the <u>Clarence Valley Aboriginal Heritage Study</u> and relevant studies and planning controls?	All	N/A	
2.6	Does the proposal incorporate First Nations cultural heritage and design in new developments?	Construction / design projects	N/A	
3.3	For any expansion of existing commercial or industrial lands or new development – is appropriate infrastructure that promotes active travel to work options included (walking, cycling, PT, accessibility etc.)?	All	N/A	
3.4	Have you explored options to promote smaller homes in appropriate locations of our existing centres to help achieve a target of 40% infill housing across the Clarence LGA?	Strategic planning	N/A	
4.3	Does the proposal comply with the <u>Clarence Valley Affordable Housing Strategies</u> , <u>Plans and</u> <u>Policies</u> ?	All	N/A	
5.2	Does the proposal comply with the Crime Prevention Through Environmental Design (CPTED) and <u>Safer by Design</u> Evaluation?	Construction / design projects	N/A	
5.5	Are there opportunities to involve <u>School Infrastructure NSW</u> (SINSW) to explore and implement joint and shared use opportunities where there is mutual benefit for the school and the community?	All	N/A	

LSPS Action	LSPS Action (guiding Principle)	Applicable	Complies (Y / N or N/A)	Detailed Answer
6.4	Is the re-use of Grafton Gaol and the Health Precinct sympathetic to the character of the surrounding streets and aspirations for the economic vitality of the Grafton CBD?	Grafton gaol and hospital precinct	N/A	
7.3	Have you explored options with state government (esp. TfNSW) and infrastructure providers to accelerate the provision of infrastructure and availability of residential and employment land to support a growing community and job opportunities in the Clarence Valley, where appropriate?	Strategic plans and major projects	N/A	
7.4	Working with State government, do facilities and redevelopment (Hospitals, Education, Corrections etc.) provide supporting infrastructure which will support a healthy, prosperous and sustainable Clarence Valley community, including for walking, cycling and other active travel? Will an 'active travel plan' be prepared to promote walking, cycling and sustainable modes of travel?	NSW Government projects	N/A	
8.1	Have you checked with TfNSW and other stakeholders to identify any impacts on major transport corridors and ensure they are protected for future transport alignments and avoid the encroachment of incompatible land uses?	Strategic plans and major projects	N/A	
9.2	Have you checked with SES, RFS and other emergency management authorities that the proposal will help make a more resilient community?	All	N/A	
9.3	Do Infrastructure proposals include the provision of 'green infrastructure' as well as its integration with recreation and open space planning? Have you considered the governments <u>Greener Places</u> guideline?	All	N/A	
10.2	Will the proposal help implement the TfNSW <u>TfNSW Movement and Place Framework</u> ? Have you checked with TfNSW? Will the proposal help to promote active transport, including opportunities to develop an active transport network, through the development of an integrated transport and land use settlement strategy for the valley, along with a 'place plan' for key centres such as Grafton, and areas of	All	N/A	

LSPS Action	LSPS Action (guiding Principle)	Applicable	Complies (Y/Nor N/A)	Detailed Answer
	'investigation' for urban development?			
11.1	Does the proposal help implement the Clarence Valley <u>Regional Economic Development</u> <u>Strategy</u> ?	All	Y	Will permit a new business and employment oppurtunity
11.4	Will the proposal help promote job opportunities in the marine industries? Does the proposal accord with the Far North Coast & Mid North Coast <u>Marine based Industry</u> <u>Policy</u> ?	All	N/A	
12.1	Does the proposal help support Grafton CBD as the principal activity centre for business, retail, culture, entertainment and prestige events in the region?	All	N/A	
13.2	Have you examined opportunities to leverage proximity to Gold Coast Airport and Toowoomba Wellcamp Airport in the supply chain for products from the Clarence Valley?	All	N/A	
13.3	Does the proposal help to protect rural zoned land and productive agricultural land from urban and rural residential development by directing development to identified investigation areas and not adjacent to productive agricultural land?	All	N/A	Does not involve urban or rural residential expansion
	Does the proposal help to implement state government policy, such as the 'right to farm'?		Y	Will support the local agricultural sector.
13.4	Does the proposal help to implement the North Coast farmland mapping project undertaken by	All	N	Minor loss of agricultural

LSPS Action	LSPS Action (guiding Principle)	Applicable	Complies (Y/Nor N/A)	Detailed Answer
	DPI and DPIE, supplemented with local studies?			land assessed in PP and supported by DPI as it is offset by benefits to local agricultural sectors.
13.5	Have you explored opportunities for artisan food and drink industry developments to be located within existing business zones and centres to improve the vitality and viability of our main streets, particularly in Grafton and Yamba?	Strategic Plans	N/A	
13.6	Does the proposal help to implement work by relevant agencies to support bushfire recovery and future resilience of the agriculture and food producing sector of the Clarence? Does the proposal help to establish networks and training opportunities for primary producers to work with local First Nations to improve land management, especially cultural burning?	All	N/A	
13.7	Does the proposal identify opportunities to increase resilience of rural landscapes and promote regenerative agriculture, especially to increase carbon in soils to improve productive capacity, contribute to reducing atmospheric CO2, increase water holding capacity of soil so reducing drought impact and significantly reducing the effects of runoff and soil erosion on roads, bridges and other infrastructure?	All	N/A	
13.8	Does the proposal help to: a) reduce the density and proximity of energy dense nutrient poor (ENDP) aka 'fast food' outlets, particularly for vulnerable populations? b) facilitate community gardens and urban agriculture on public and private land, particularly in new land release areas and urban fringes so that neighbourhoods have access to local food growing lands? c) increase access to drinking water through the provision of bubbler/taps in public places, sporting venues and community facilities, and limit/discourage the consumption of sugar sweetened beverages (SSBs)? d) support and encourage community food centres (aka food hubs) which supply and promote locally grown produce and take a social justice approach to food? e) support and encourage local farmers markets which supply local produce thereby reducing food miles and supporting local and regional farmers?	All	N/A	

LSPS Action	LSPS Action (guiding Principle)	Applicable	Complies (Y / N or N/A)	Detailed Answer
14.1	Does the change to the planning framework help to implement the <u>Clarence River Way</u> <u>Masterplan</u> ?	All	N/A	
	Will the proposal help to welcome and sustainably manage visitors to the area, particularly to enable appropriate development in Grafton and our river towns and coastal areas?			
14.2	Does the proposal help to update the Clarence Valley LEP and relevant DCPs to build on the strengths of the Clarence River and support appropriate tourism opportunities and help implement aspects of the Clarence River Way Masterplan?	Strategic Plans	N/A	
14.3	Does the proposal help to identify opportunities to expand nature-based adventure and cultural tourism by leveraging the Clarence Valleys natural, heritage and community assets?	All	N/A	
15.1	Will the proposal help to protect areas of High Environmental Value (HEV)? Does the proposal take a strategic approach to land use planning, informed by our biodiversity strategy and strategic environmental goals, particularly for corridors and areas of high environmental value?	All	N/A	
15.2	Does the proposal help to achieve waterway health and protect our marine environment?	Strategic plans	N/A	
15.3	Will the proposal help to ensure that water quality and aquatic biodiversity impacts are considered in planning decisions?	All	у	Future wastewater management system will

LSPS Action	LSPS Action (guiding Principle)	Applicable	Complies (Y/Nor N/A)	Detailed Answer
	Will the changes ensure that the planning framework aligns with our coast and estuary management plans/programs, including to promote the values of riparian vegetation vegetated buffers and permeable surfaces to maintain and improve water quality and hydrology?			protect water quality
16.2	Have you checked biodiversity mapping layers and fauna corridors with Council?	All	N/A	
16.6	Does the proposal help implement Councils Biodiversity Strategy 2020?	All	N/A	
17.1	Does the proposal help create safer, more disaster resilient communities?	All	N/A	
	Have you had particular regard to the long term social and economic costs of the potential effects of natural hazards and risk to life and evacuation capacity?			
18.3	Does the proposal consider the <u>Clarence Valley Regional Water Efficiency Strategic</u> <u>Plan</u> ?	All	N/A	
19.1	Does the proposal help to sustainably manage natural, mineral and forestry resources? (e.g. Protecting quarry's from urban encroachment and vice versa)	All	N/A	
20.1	Does the proposal help to grow regional and sub-regional relationships with adjoining Councils, state government and other organisations?		N/A	
21.1	Does the proposal help increase community participation in decision making and comply with the Councils Community Participation Plan?	All	Y	Community consultation will be in accordance with Plan Making Guidelines
22.1	Will the proposal help Grafton to be recognised as a Regional City in the North Coast Regional Plan?	All	N/A	
23.1	Will the proposal help achieve the Priorities of the Local Strategic Planning Statement?	All	Y	Where applicable.

ANNEXURE Q

SEPP (RESILIENCE & HAZARDS) 2021 ASSESSMENT

Division 3 Coastal Environment Area

2.10 Development on land within the coastal environmental area

- 1. Development consent must not be granted to development on land that is within the coastal environmental area unless the consent authority has considered whether the proposed development is likely to cause an adverse impact on the following:
 - a) the integrity and resilience of the biophysical, hydrological (surface and groundwater) and ecological environment,

Comment: No impact future wastewater management systems for each shed will protect water quality.

b) coastal environmental values and natural costal processes

Comment: No impact.

c) the water quality of the marine estate (within the meaning of the Marine Estate Management Act 2014), in particular, the cumulative impacts of the proposed development on any of the sensitive coastal lakes identified in Schedule 1,

Comment: No impact.

d) marine vegetation, native vegetation and fauna and their habits, undeveloped headland and rock platforms

Comment: No impact.

e) existing public open space and safe access to and along the foreshore, beach, headland and rock platform for members of the public, including persons with a disability

Comment: No impact.

f) aboriginal cultural heritage, practices and places

Comment: No sites or arefacts identified on AHIMS search see Annexure

g) the use of the surf zone

Comment: Not applicable.

2.11 Division 4 Development on land within the coastal use area.

- 1. Development consent must not be granted to development on land that is within the coastal use area unless the consent authority:
 - a) has considered whether the proposed development is likely to cause an adverse impact on the following:
 - i. existing, safe access to and along the foreshore, beach, headland or rock platform for members of the public, including persons with a disability

Comment: N/A

ii. overshadowing, wind funnelling and the loss of views from public places to foreshores

Comment: N/A

iii. the visual amenity and scenic qualities of the coast, including coastal headlands

Comment: N/A

iv. Aboriginal cultural heritage, practices and places

Comment: No sites or arefacts identified on AHIMS search see Annexure

v. Cultural and built environment heritage

Comment: No impact.